Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (1): 109-116    DOI: 10.3785/j.issn.1006-754X.2023.00.002
Whole Machine and System Design     
Design of cable tunnel fault warning system based on MSSA-SVM
Chao JI1(),Liang WANG1,Xiao-jing WANG2,Xiao-bing LI2,Wen CAO1
1.School of Electronic Information, Xi'an Polytechnic University, Xi'an 710600, China
2.Xi'an Jinpower Electrical Co. , Ltd. , Xi'an 710075, China
Download: HTML     PDF(4128KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to realize online monitoring and fault alarm of cable tunnel environment and improve the intelligent level of cable tunnel monitoring system, a fault warning system based on multi-feature sparrow search algorithm (MSSA) optimized support vector machines (SVM) was proposed. Firstly, the fault data set was preprocessed normalized; secondly, a multi-class SVM model was established, and MSSA was used to optimize the parameters of the SVM, so as to establish the MSSA-SVM model. The trained MSSA-SVM model was embedded in the database server of the fault warning system, and the real-time collected data was monitored and diagnosed online, and the alarm was given in time; finally, the effectiveness of MSSA-SVM model was verified by experiments, and it was compared with sparrow search algorithm (SSA), grey wolf optimization (GWO) and particle swarm optimization (PSO). The experimental results showed that MSSA-SVM model has the highest fault recognition accuracy, and its recognition accuracy could reach 95%. The research result provides a reference for effectively improving the intelligence and accuracy of online monitoring of cable tunnels.



Key wordscable tunnel      monitoring system      support vector machine      fault diagnosis      multi-feature sparrow search algorithm     
Received: 21 March 2022      Published: 06 March 2023
CLC:  TM 712  
Cite this article:

Chao JI,Liang WANG,Xiao-jing WANG,Xiao-bing LI,Wen CAO. Design of cable tunnel fault warning system based on MSSA-SVM. Chin J Eng Design, 2023, 30(1): 109-116.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.002     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I1/109


基于MSSA-SVM的电缆隧道故障预警系统设计

为了实现电缆隧道环境的在线监测和故障报警,提高电缆隧道监测系统的智能化水平,提出了一种基于多特征麻雀搜索算法(multi-feature modified sparrow search algorithm, MSSA)优化支持向量机(support vector machines, SVM)的故障预警系统。首先,对故障数据集进行归一化预处理;其次,建立多分类SVM模型,用MSSA对SVM进行参数寻优,从而建立MSSA-SVM模型,并将训练好的MSSA-SVM模型嵌入故障预警系统的数据库服务器中,对实时采集的数据进行在线监测、诊断,并及时报警;最后,通过实验验证了MSSA-SVM模型的有效性,并将其与麻雀搜索算法(sparrow search algorithm, SSA)、灰狼优化算法(grey wolf optimization, GWO)和粒子群算法(particle swarm optimization, PSO)进行对照实验,实验结果表明,MSSA-SVM模型的故障识别准确率最高,其识别准确率可达95%。研究结果为有效提高电缆隧道在线监测的智能性和准确性提供了参考。


关键词: 电缆隧道,  监测系统,  支持向量机,  故障诊断,  多特征麻雀搜索算法 
Fig.1 Framework of online monitoring system for cable tunnel
Fig.2 Functional modular design of monitoring center
Fig.3 Fault warning process
Fig.4 Optimization process based on MSSA-SVM
Fig.5 Device of cable tunnel fault warning experiment
Fig.6 Data acquisition control terminal
故障标签故障类型训练样本数量/组测试样本数量/组
1水灾3510
2火灾3510
3有毒气4010
4内部潮湿4515
5氧气不足4515
Table 1 Distribution of fault samples
Fig.7 Fitness curve of MSSA-SVM model
Fig.8 Fault recognition results of MSSA-SVM model
Fig.9 Fault recognition results of the SSA-SVM, GWO-SVM and PSO-SVM models
Fig.10 Comparison of fault recognition accuracy and running time of each model
Fig.11 Comparison of recognition accuracy of various kinds of faults
[1]   卢建序.电力电缆故障预警与测距定位技术研究[D].杭州:浙江大学,2015:11-14.
LU Jian-xu. Research on technology of power cable fault warning and localization[D]. Hangzhou: Zhejiang University, 2015: 11-14.
[2]   杨静,朱晓岭,董翔,等.基于护层电流的高压电缆故障在线监测和诊断[J].高电压技术,2016,42(11):3616-3625. doi:10.13336/j.1003-6520.hve.20161031022
YANG Jing, ZHU Xiao-ling, DONG Xiang, et al. On-line monitoring and diagnosis of HV cable faults based on sheath currents[J]. High Voltage Engineering, 2016, 42(11): 3616-3625.
doi: 10.13336/j.1003-6520.hve.20161031022
[3]   李俊廷.电缆隧道综合监控技术研究[D].秦皇岛:燕山大学,2016:17-22.
LI Jun-ting. The research of cable tunnel comprehensive monitoring technology[D]. Qinhuangdao: Yanshan University, 2016: 17-22.
[4]   HE Yu-qing, CHEN Yue-hui, YANG Zhi-qiang, et al. A review on the influence of intelligent power consumption technologies on the utilization rate of distribution network equipment[J]. Protection and Control of Modern Power Systems, 2018, 3(1): 18.
[5]   张光欣,应黎明.电力变压器模糊数学风险评估模型研究[J].陕西电力,2012,40(4):25-29,48. doi:10.3969/j.issn.1673-7598.2012.04.006
ZHNAG Guang-xin, YING Li-ming. Research of risk assessment model of power transformers based on fuzzy mathematics[J]. Smart Power, 2012, 40(4): 25-29.
doi: 10.3969/j.issn.1673-7598.2012.04.006
[6]   赵群辉,张发刚,胡斌,等.电力电缆隧道综合监控系统的设计与实现[J].电工技术,2019(16):61-63,156. doi:10.3969/j.issn.1002-1388.2019.16.027
ZHAO Qun-hui, ZHANG Fa-gang, HU Bin, et al. Design and implementation of integrated monitoring system for power cable tunnels[J]. Electric Engineering, 2019(16): 61-63, 156.
doi: 10.3969/j.issn.1002-1388.2019.16.027
[7]   赖磊洲.电缆隧道环境在线监测系统的研究与设计[D].广州:华南理工大学,2012:10-16. doi:10.1109/ccieng.2011.6008127
LAI Lei-zhou. The research and design of environmental monitoring system for cable tunnel[D]. Guangzhou: South China University of Technology, 2012: 10-16.
doi: 10.1109/ccieng.2011.6008127
[8]   王雪.电缆隧道综合监测系统设计与实现[D].西安:西安科技大学,2020:15-23.
WANG Xue. Design and implementation of cable tunnel integrated monitoring system[D]. Xi'an: Xi'an University of Science and Technology, 2020: 15-23.
[9]   肖桂雨,向健平,凌永志,等.基于小波神经网络的风力发电机故障预测方法[J].电力科学与技术学报,2019,34(2):195-202. doi:10.3969/j.issn.1673-9140.2019.02.028
XIAO Gui-yu, XIANG Jian-ping, LING Yong-zhi, et al. Prediction of wind turbine faults based on wavelet neural networks[J]. Journal of Electric Power Science and Technology, 2019, 34(2): 195-202.
doi: 10.3969/j.issn.1673-9140.2019.02.028
[10]   李捷辉,贾奎,金炜凯,等.基于优化支持向量机的发动机故障预诊断[J].现代制造工程,2021(3):127-131.
LI Jie-hui, JIA Kui, JIN Wei-kai, et al. Engine fault predicting diagnosis based on optimized support vector machine[J]. Modern Manufacturing Engineering, 2021(3): 127-131.
[11]   单亚峰,段金凤,付华,等.基于SSA-AdaBoost-SVM的变压器故障诊断[J].控制工程,2022,29(2):280-286.
SHAN Ya-feng, DUAN Jin-feng, FU Hua, et al. Transformer fault diagnosis based on SSA-AdaBoost-SVM[J]. Control Engineering of China, 2022, 29(2): 280-286.
[12]   马晨佩,李明辉,巩强令,等.基于麻雀搜索算法优化支持向量机的滚动轴承故障诊断[J].科学技术与工程,2021,21(10):4025-4029. doi:10.3969/j.issn.1671-1815.2021.10.023
MA Chen-pei, LI Ming-hui, GONG Qiang-ling, et al. Fault diagnosis of rolling bearing based on sparrow search algorithm optimized support vector machine[J]. Science Technology and Engineering, 2021, 21(10): 4025-4029.
doi: 10.3969/j.issn.1671-1815.2021.10.023
[13]   胡璇,李春,叶柯华.灰狼算法优化支持向量机在风力机齿轮箱故障诊断中的应用[J].机械强度,2021,43(5):1026-1034.
HU Xuan, LI Chun, YE Ke-hua. Application of GWO-SVM in wind turbine gearbox fault diagnosis[J]. Journal of Mechanical Strength, 2021, 43(5): 1026-1034.
[14]   刘冬梅,霍龙龙,王浩然,等.基于PSO-SVM的电流放大器故障诊断研究[J].传感器与微系统,2021,40(8):50-52,56. doi:10.13873/J.1000-9787(2021)08-0050-03 .
LIU Dong-mei, HUO Long-long, WANG Hao-ran, et al. Study on fault diagnosis for current amplifier based on PSO-SVM[J]. Transducer and Microsystem Technologies, 2021, 40(8): 50-52, 56.
doi: 10.13873/J.1000-9787(2021)08-0050-03
[15]   海涛,范恒,王楷杰,等.基于PSO-SVM算法的风电机组结冰故障诊断[J].智慧电力,2021,49(4):1-6,74.
Tao HAI, FAN Heng, WANG Kai-jie, et al. Icing fault diagnosis of wind turbines based on PSO-SVM algorithm[J]. Smart Power, 2021, 49(4): 1-6, 7.
[16]   KANG S K, MH P, KIM Y H, et al. Development of anomaly-detection system for the underground cable tunnel using autoencoder[J]. The Transactions of the Korean Institute of Electrical Engineers P, 2020, 69P(2): 69-75.
[17]   丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10. doi:10.3969/j.issn.1001-0548.2011.01.001
DING Shi-fei, QI Bing-juan, TAN Hong-yan. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1): 2-10.
doi: 10.3969/j.issn.1001-0548.2011.01.001
[18]   LI Guo-quan, YANG Lin-xi, WU Zhi-you, et al. D.C. programming for sparse proximal support vector machines[J]. Information Sciences, 2021, 547: 187-201.
[19]   王晓辉,王小娟,谷峥,等.基于优化支持向量机的实验设备故障诊断[J].实验技术与管理,2021,38(6):254-257. doi:10.16791/j.cnki.sjg.2021.06.054
WANG Xiao-hui, WANG Xiao-juan, GU Zheng, et al. Fault diagnosis of experimental equipment based on optimized support vector machine[J]. Experimental Technology and Management, 2021, 38(6): 254-257.
doi: 10.16791/j.cnki.sjg.2021.06.054
[20]   XUE Jian-kai, SHEN Bo. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34
[21]   XIAO Ji-hong, ZHU Xue-hong, HUANG Chuang-xia, et al. A new approach for stock price analysis and prediction based on SSA and SVM[J]. International Journal of Information Technology and Decision Making, 2019, 18(1): 287-310.
[22]   李雅丽,王淑琴,陈倩茹,等.若干新型群智能优化算法的对比研究[J].计算机工程与应用,2020,56(22):1-12.
LI Ya-li, WANG Shu-qin, CHEN Qian-ru, et al. Comparative study of several new swarm intelligence optimization algorithms[J]. Computer Engineering and Applications, 2020, 56(22): 1-12.
[1] Shu-wei GU,Kai CHEN,Ya-xin SONG,Ming-sheng YU,Zhi-xiang LIU,Kang ZOU. Design of control system of airborne water exploration and drainage drilling rig of excavating and anchoring all-in-one machine[J]. Chin J Eng Design, 2022, 29(6): 776-783.
[2] Hong-jiang LIU,Teng HU,Yong HE,Feng DONG,Wei LUO. Spindle thermal error modeling of NC machine tool based onCSO-SVM[J]. Chin J Eng Design, 2022, 29(3): 339-346.
[3] XIAO Zhen, HE Yan, LI Yu-feng, WU Peng-cheng, LIU De-gao, DU Jiang. Application of improved MDSMOTE and PSO-SVM in classification prediction of automobile combination instrument[J]. Chin J Eng Design, 2022, 29(1): 20-27.
[4] WU Guo-pei, YU Yin-quan, TU Wen-bing. Review of research on fault diagnosis of permanent magnet synchronous motor[J]. Chin J Eng Design, 2021, 28(5): 548-558.
[5] SHANG Zhi-wu, ZHOU Shi-qi. Research on micropipetting technology based on image monitoring[J]. Chin J Eng Design, 2021, 28(4): 495-503.
[6] LIU Yu-jia, PAN Bin, LI Dong-ze, LI Feng-di, ZHANG Qian, SUN Feng-gang, LAN Peng. Design and implementation of unattended intelligent management system for homestay[J]. Chin J Eng Design, 2020, 27(3): 389-397.
[7] LI Cheng-bing, YE Chao, MAO Xi-hao. Application of LSSVM optimized by improved artificial bee colony algorithm in quantitative analysis of mixture gas[J]. Chin J Eng Design, 2020, 27(1): 94-102.
[8] LU Wan-jie, FU Hua, ZHAO Hong-rui. Equipment recognition of mining patrol robot based on deep learning algorithm[J]. Chin J Eng Design, 2019, 26(5): 527-533.
[9] NI Hong-qi, JIN Chi, FENG Fei. Development of fault diagnosis system for corrugated compensator[J]. Chin J Eng Design, 2019, 26(3): 354-363.
[10] MA Tian-bing, WANG Xiao-dong, DU Fei, WANG Xin-quan. Fault diagnosis for rigid guide based on GA-SVM[J]. Chin J Eng Design, 2019, 26(2): 170-176.
[11] HU Yi-yao, ZHU Bin, ZHANG Wei, HE Wei, SHEN Ping-sheng. Design and implementation of knowledge base building tool software[J]. Chin J Eng Design, 2018, 25(4): 367-373.
[12] JIANG Yue-chun, YANG Xu-qiong, CHEN Li-feng, HE Fei. Super-short-time wind power combination forecasting based on support vector machine optimized by EMD-SC and AGSA[J]. Chin J Eng Design, 2017, 24(2): 187-195.
[13] LI Xiao-huo, WENG Zheng-yang, QIANG Ya-sen, SHI Shang-wei, LI Yan. Fault diagnosis of hydraulic breaking hammer based on Fruit Fly Algorithm optimized fuzzy RBF neural network[J]. Chin J Eng Design, 2015, 22(6): 540-545.
[14] LI Ling-Ling, JING Li-Ting, MA Dong-Juan, LI Zhi-Gang. Improved evidence theory and its application in fault diagnosis of power system[J]. Chin J Eng Design, 2012, 19(6): 485-488.
[15] HAN Hai-tao,MA Hong-guang,HAN Kun,ZHENG Geng-le. Multitone stimulus signal design for identifying volterra frequency domain kernels[J]. Chin J Eng Design, 2012, 19(2): 123-127.