Whole Machine and System Design |
|
|
|
|
Design of cable tunnel fault warning system based on MSSA-SVM |
Chao JI1( ),Liang WANG1,Xiao-jing WANG2,Xiao-bing LI2,Wen CAO1 |
1.School of Electronic Information, Xi'an Polytechnic University, Xi'an 710600, China 2.Xi'an Jinpower Electrical Co. , Ltd. , Xi'an 710075, China |
|
|
Abstract In order to realize online monitoring and fault alarm of cable tunnel environment and improve the intelligent level of cable tunnel monitoring system, a fault warning system based on multi-feature sparrow search algorithm (MSSA) optimized support vector machines (SVM) was proposed. Firstly, the fault data set was preprocessed normalized; secondly, a multi-class SVM model was established, and MSSA was used to optimize the parameters of the SVM, so as to establish the MSSA-SVM model. The trained MSSA-SVM model was embedded in the database server of the fault warning system, and the real-time collected data was monitored and diagnosed online, and the alarm was given in time; finally, the effectiveness of MSSA-SVM model was verified by experiments, and it was compared with sparrow search algorithm (SSA), grey wolf optimization (GWO) and particle swarm optimization (PSO). The experimental results showed that MSSA-SVM model has the highest fault recognition accuracy, and its recognition accuracy could reach 95%. The research result provides a reference for effectively improving the intelligence and accuracy of online monitoring of cable tunnels.
|
Received: 21 March 2022
Published: 06 March 2023
|
|
基于MSSA-SVM的电缆隧道故障预警系统设计
为了实现电缆隧道环境的在线监测和故障报警,提高电缆隧道监测系统的智能化水平,提出了一种基于多特征麻雀搜索算法(multi-feature modified sparrow search algorithm, MSSA)优化支持向量机(support vector machines, SVM)的故障预警系统。首先,对故障数据集进行归一化预处理;其次,建立多分类SVM模型,用MSSA对SVM进行参数寻优,从而建立MSSA-SVM模型,并将训练好的MSSA-SVM模型嵌入故障预警系统的数据库服务器中,对实时采集的数据进行在线监测、诊断,并及时报警;最后,通过实验验证了MSSA-SVM模型的有效性,并将其与麻雀搜索算法(sparrow search algorithm, SSA)、灰狼优化算法(grey wolf optimization, GWO)和粒子群算法(particle swarm optimization, PSO)进行对照实验,实验结果表明,MSSA-SVM模型的故障识别准确率最高,其识别准确率可达95%。研究结果为有效提高电缆隧道在线监测的智能性和准确性提供了参考。
关键词:
电缆隧道,
监测系统,
支持向量机,
故障诊断,
多特征麻雀搜索算法
|
|
[1] |
卢建序.电力电缆故障预警与测距定位技术研究[D].杭州:浙江大学,2015:11-14. LU Jian-xu. Research on technology of power cable fault warning and localization[D]. Hangzhou: Zhejiang University, 2015: 11-14.
|
|
|
[2] |
杨静,朱晓岭,董翔,等.基于护层电流的高压电缆故障在线监测和诊断[J].高电压技术,2016,42(11):3616-3625. doi:10.13336/j.1003-6520.hve.20161031022 YANG Jing, ZHU Xiao-ling, DONG Xiang, et al. On-line monitoring and diagnosis of HV cable faults based on sheath currents[J]. High Voltage Engineering, 2016, 42(11): 3616-3625.
doi: 10.13336/j.1003-6520.hve.20161031022
|
|
|
[3] |
李俊廷.电缆隧道综合监控技术研究[D].秦皇岛:燕山大学,2016:17-22. LI Jun-ting. The research of cable tunnel comprehensive monitoring technology[D]. Qinhuangdao: Yanshan University, 2016: 17-22.
|
|
|
[4] |
HE Yu-qing, CHEN Yue-hui, YANG Zhi-qiang, et al. A review on the influence of intelligent power consumption technologies on the utilization rate of distribution network equipment[J]. Protection and Control of Modern Power Systems, 2018, 3(1): 18.
|
|
|
[5] |
张光欣,应黎明.电力变压器模糊数学风险评估模型研究[J].陕西电力,2012,40(4):25-29,48. doi:10.3969/j.issn.1673-7598.2012.04.006 ZHNAG Guang-xin, YING Li-ming. Research of risk assessment model of power transformers based on fuzzy mathematics[J]. Smart Power, 2012, 40(4): 25-29.
doi: 10.3969/j.issn.1673-7598.2012.04.006
|
|
|
[6] |
赵群辉,张发刚,胡斌,等.电力电缆隧道综合监控系统的设计与实现[J].电工技术,2019(16):61-63,156. doi:10.3969/j.issn.1002-1388.2019.16.027 ZHAO Qun-hui, ZHANG Fa-gang, HU Bin, et al. Design and implementation of integrated monitoring system for power cable tunnels[J]. Electric Engineering, 2019(16): 61-63, 156.
doi: 10.3969/j.issn.1002-1388.2019.16.027
|
|
|
[7] |
赖磊洲.电缆隧道环境在线监测系统的研究与设计[D].广州:华南理工大学,2012:10-16. doi:10.1109/ccieng.2011.6008127 LAI Lei-zhou. The research and design of environmental monitoring system for cable tunnel[D]. Guangzhou: South China University of Technology, 2012: 10-16.
doi: 10.1109/ccieng.2011.6008127
|
|
|
[8] |
王雪.电缆隧道综合监测系统设计与实现[D].西安:西安科技大学,2020:15-23. WANG Xue. Design and implementation of cable tunnel integrated monitoring system[D]. Xi'an: Xi'an University of Science and Technology, 2020: 15-23.
|
|
|
[9] |
肖桂雨,向健平,凌永志,等.基于小波神经网络的风力发电机故障预测方法[J].电力科学与技术学报,2019,34(2):195-202. doi:10.3969/j.issn.1673-9140.2019.02.028 XIAO Gui-yu, XIANG Jian-ping, LING Yong-zhi, et al. Prediction of wind turbine faults based on wavelet neural networks[J]. Journal of Electric Power Science and Technology, 2019, 34(2): 195-202.
doi: 10.3969/j.issn.1673-9140.2019.02.028
|
|
|
[10] |
李捷辉,贾奎,金炜凯,等.基于优化支持向量机的发动机故障预诊断[J].现代制造工程,2021(3):127-131. LI Jie-hui, JIA Kui, JIN Wei-kai, et al. Engine fault predicting diagnosis based on optimized support vector machine[J]. Modern Manufacturing Engineering, 2021(3): 127-131.
|
|
|
[11] |
单亚峰,段金凤,付华,等.基于SSA-AdaBoost-SVM的变压器故障诊断[J].控制工程,2022,29(2):280-286. SHAN Ya-feng, DUAN Jin-feng, FU Hua, et al. Transformer fault diagnosis based on SSA-AdaBoost-SVM[J]. Control Engineering of China, 2022, 29(2): 280-286.
|
|
|
[12] |
马晨佩,李明辉,巩强令,等.基于麻雀搜索算法优化支持向量机的滚动轴承故障诊断[J].科学技术与工程,2021,21(10):4025-4029. doi:10.3969/j.issn.1671-1815.2021.10.023 MA Chen-pei, LI Ming-hui, GONG Qiang-ling, et al. Fault diagnosis of rolling bearing based on sparrow search algorithm optimized support vector machine[J]. Science Technology and Engineering, 2021, 21(10): 4025-4029.
doi: 10.3969/j.issn.1671-1815.2021.10.023
|
|
|
[13] |
胡璇,李春,叶柯华.灰狼算法优化支持向量机在风力机齿轮箱故障诊断中的应用[J].机械强度,2021,43(5):1026-1034. HU Xuan, LI Chun, YE Ke-hua. Application of GWO-SVM in wind turbine gearbox fault diagnosis[J]. Journal of Mechanical Strength, 2021, 43(5): 1026-1034.
|
|
|
[14] |
刘冬梅,霍龙龙,王浩然,等.基于PSO-SVM的电流放大器故障诊断研究[J].传感器与微系统,2021,40(8):50-52,56. doi:10.13873/J.1000-9787(2021)08-0050-03 . LIU Dong-mei, HUO Long-long, WANG Hao-ran, et al. Study on fault diagnosis for current amplifier based on PSO-SVM[J]. Transducer and Microsystem Technologies, 2021, 40(8): 50-52, 56.
doi: 10.13873/J.1000-9787(2021)08-0050-03
|
|
|
[15] |
海涛,范恒,王楷杰,等.基于PSO-SVM算法的风电机组结冰故障诊断[J].智慧电力,2021,49(4):1-6,74. Tao HAI, FAN Heng, WANG Kai-jie, et al. Icing fault diagnosis of wind turbines based on PSO-SVM algorithm[J]. Smart Power, 2021, 49(4): 1-6, 7.
|
|
|
[16] |
KANG S K, MH P, KIM Y H, et al. Development of anomaly-detection system for the underground cable tunnel using autoencoder[J]. The Transactions of the Korean Institute of Electrical Engineers P, 2020, 69P(2): 69-75.
|
|
|
[17] |
丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10. doi:10.3969/j.issn.1001-0548.2011.01.001 DING Shi-fei, QI Bing-juan, TAN Hong-yan. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1): 2-10.
doi: 10.3969/j.issn.1001-0548.2011.01.001
|
|
|
[18] |
LI Guo-quan, YANG Lin-xi, WU Zhi-you, et al. D.C. programming for sparse proximal support vector machines[J]. Information Sciences, 2021, 547: 187-201.
|
|
|
[19] |
王晓辉,王小娟,谷峥,等.基于优化支持向量机的实验设备故障诊断[J].实验技术与管理,2021,38(6):254-257. doi:10.16791/j.cnki.sjg.2021.06.054 WANG Xiao-hui, WANG Xiao-juan, GU Zheng, et al. Fault diagnosis of experimental equipment based on optimized support vector machine[J]. Experimental Technology and Management, 2021, 38(6): 254-257.
doi: 10.16791/j.cnki.sjg.2021.06.054
|
|
|
[20] |
XUE Jian-kai, SHEN Bo. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34
|
|
|
[21] |
XIAO Ji-hong, ZHU Xue-hong, HUANG Chuang-xia, et al. A new approach for stock price analysis and prediction based on SSA and SVM[J]. International Journal of Information Technology and Decision Making, 2019, 18(1): 287-310.
|
|
|
[22] |
李雅丽,王淑琴,陈倩茹,等.若干新型群智能优化算法的对比研究[J].计算机工程与应用,2020,56(22):1-12. LI Ya-li, WANG Shu-qin, CHEN Qian-ru, et al. Comparative study of several new swarm intelligence optimization algorithms[J]. Computer Engineering and Applications, 2020, 56(22): 1-12.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|