Please wait a minute...
Chinese Journal of Engineering Design  2017, Vol. 24 Issue (2): 187-195    DOI: 10.3785/j.issn.1006-754X.2017.02.010
    
Super-short-time wind power combination forecasting based on support vector machine optimized by EMD-SC and AGSA
JIANG Yue-chun, YANG Xu-qiong, CHEN Li-feng, HE Fei
College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
Download: HTML     PDF(2132KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Due to the randomness, volatility and relativity of the wind power, it brings great challenges to wind power integration. To improve the ultra short-term prediction accuracy of the wind power, a kind of method for predicting super-short-term wind power based on empirical mode decomposition (EMD) and spectral clustering (SC) and ameliorated gravitational search algorithm (AGSA) that could optimize the learning parameters of support vector machine (SVM) was put forward. Firstly, the raw data of the wind power was denoised by EMD to eliminate the irregular data; then the cluster analysis of the subsequences from EMD was carried out by SC, and SVM's model was optimized by applying AGSA to predict each subsequence respectively; finally the results of the subsequences were added together to get the ultimate predicted value. Taking one wind farm's actual data as an example, the simulation indicates that the proposed model can improve the accuracy and veracity when predicting wind power. Meanwhile, it also suggests the reasonability of this method. The method can forecast wind power accurately.



Key wordssuper-short-time wind power forecasting      empirical mode decomposition      spectral clustering      ameliorated gravitational search algorithm      support vector machine     
Published: 28 April 2017
CLC:  TH11  
Cite this article:

JIANG Yue-chun, YANG Xu-qiong, CHEN Li-feng, HE Fei. Super-short-time wind power combination forecasting based on support vector machine optimized by EMD-SC and AGSA. Chinese Journal of Engineering Design, 2017, 24(2): 187-195.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2017.02.010     OR     https://www.zjujournals.com/gcsjxb/Y2017/V24/I2/187


基于EMD-SC和AGSA优化支持向量机的超短期风电功率组合预测

风电功率存在较大的随机性、波动性和相关性,这会对风电并网带来极大的挑战。为提高超短期风电功率预测精度,提出一种基于经验模态分解(empirical mode decomposition,EMD)、谱聚类(spectral clustering,SC)和改进型引力搜索算法(ameliorated gravitational search algorithm,AGSA)优化支持向量机(support vector machine,SVM)参数的超短期风电功率组合预测方法。首先通过经验模态分解对风电原始数据进行去噪处理,剔除不规则的数据;然后应用谱聚类对经验模态分解后的子序列进行聚类分析,再应用改进型引力搜索算法优化支持向量机模型对各个子序列进行预测;最后将各子序列的预测结果相加得到最终预测值。以某风电场的实际数据为算例,仿真研究表明,所提出的组合模型能够提高风电功率预测精度,且预测效果较好,同时也证明了所采用方法的合理性。该方法能够用于风电功率的精确预测。


关键词: 超短期风电功率预测,  经验模态分解,  谱聚类,  改进型引力搜索算法,  支持向量机 
[[1]]   张宁宇,高山,赵欣.一种考虑风电随机性的机组组合模型及其算法[J].电工技术学报,2013,28(5):22-29. ZHANG Ning-yu, GAO Shan, ZHAO Xin. An unit commitment model and algorithm with randomness of wind power[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 22-29.
[[2]]   MA Xi-yuan, SUN Yuan-zhang, FANG Hua-liang. Scenario generation of wind power based on statistical uncertainty and variability[J]. IEEE Transaction on Sustainable Energy, 2013, 4(4): 894-904.
[[3]]   DONG L, WANG L J, SHAHNAWAZ F K, et al. Wind power day-ahead prediction with cluster analysis of NWP[J]. Renewable and Sustainable Energy Reviews, 2016, 60(6): 1206-1212.
[[4]]   HUANG Z X. Extensions to the K-means algorithm for clustering large data sets with categorical values[J]. Data Mining and Knowledge Discovery, 1998, 2(3):283-304.
[[5]]   周林,平西建,徐森,等.基于谱聚类的聚类集成算法[J].自动化学报,2012,38(8):1335-1342. ZHOU Lin, PING Xi-Jian, XU Sen, et al. Cluster ensemble based on spectral clustering[J]. Acta Automatica Sinica, 2012, 38(8): 1335-1342.
[[6]]   BACH F R, JORDAN M I. Learning spectral clustering[J]. Advances in Neural Information Processing Systems, 2004, 16(2): 1-13.
[[7]]   PEIYUAN C, PEDERSEN T, BAK J B, et al. ARIMA-based time series model of stochastic wind power generation [J]. IEEE Transactions on Power Systems, 2010, 25(2): 667-676.
[[8]]   LOUKA P, GALANIS G, SIEBERT N, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(12): 2348-2362.
[[9]]   范高峰,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报,2008,28(34):118-123. FAN Gao-feng, WANG Wei-sheng, LIU Chun, et al. Wind power prediction based on artificial neural network[J]. Proceedings of the CSEE, 2008, 28(34): 118-123.
[[10]]   江岳春,张丙江,邢方方,等.基于混沌时间序列GA-VNN模型的超短期风功率多步预测[J].电网技术,2015,39(8):2160-2166. JIANG Yue-chun, ZHANG Bing-jiang, XING Fang-fang, et al. Super-short-term multi-step prediction of wind power based on GA-VNN model of chaotic time series[J]. Power System Technology, 2015, 39(8): 2160-2166.
[[11]]   杨琦,张建华,王向峰,等.基于小波-神经网络的风速及风力发电量预测[J].电网技术,2009,33(17):44-48. YANG Qi, ZHANG Jian-hua, WANG Xiang-feng, et al. Wind speed and generated wind power forecast based on wavelet-neural network[J]. Power System Technology, 2009, 33(17): 44-48.
[[12]]   严欢,卢继平,覃俏云,等.基于多属性决策和支持向量机的风电功率非线性组合预测[J].电力系统自动化,2013,37(10):29-34. YAN Huan, LU Ji-ping, QIN Qiao-yun, et al. A nonlinear combined model for wind power forecasting based on multi-attribute decision-making and support vector machine[J]. Automation of Electric Power Systems, 2013, 37(10): 29-34.
[[13]]   谢宏,魏江平,刘鹤立.短期负荷预测中支持向量机模型的参数选取和优化方法[J].中国电机工程学报, 2006,26(22):17-22. XIE Hong, WEI Jiang-ping, LIU He-li. Parameter selection and optimization method of SVM model for short-term load forecasting[J]. Proceedings of the CSEE, 2006, 26(22): 17-22.
[[14]]   肖白,聂鹏,穆钢,等.基于多级聚类分析和支持向量机的空间负荷预测方法[J].电力系统自动化,2015,39(12):56-61. XIAO Bai, NIE Peng, MU Gang, et al. A spatial load forecasting method based on multilevel clustering analysis and support vector machine[J]. Automation of Electric Power Systems, 2015, 39(12): 56-61.
[[15]]   高昆仑,刘建明,徐茹枝,等.基于支持向量机和粒子群算法的信息网络安全态势复合预测模型[J].电网技术,2011,35(4):176-182. GAO Kun-lun, LIU Jian-ming, XU Ru-zhi, et al. A hybrid security situation prediction model for information network based on support vector machine and particle swarm optimization[J]. Power System Technology, 2011, 35(4): 176-182.
[[16]]   ZHANG W, NIU P, LI G, et al. Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm[J]. Knowledge-Based Systems, 2013, 39(2): 34-44.
[[17]]   KUANG W, YANG Z, LING W K, et al. Nonlinear and adaptive undecimated hierarchical multiresolution analysis for real valued discrete time signals via empirical mode decomposition approach[J]. Digital Signal Processing, 2015, 45(10): 36-54.
[[18]]   蔡晓妍,戴冠中,杨黎斌.谱聚类算法综述[J].计算机科学,2008,35(7):14-18. CAI Xiao-yan, DAI Guan-zhong, YANG Li-bin. Survey on spectral clustering algorithms[J]. Computer Science, 2008, 35(7): 14-18.
[[19]]   荣海娜,张葛祥,金炜东.系统辨识中支持向量机核函数及其参数的研究[J].系统仿真学报,2006,18(11): 3204-3208. RONG Hai-na, ZHANG Ge-xiang, JIN Wei-dong. Selection of kernel functions and parameters for support vector machines in system identification[J]. Journal of System Simulation, 2006, 18(11): 3204-3208.
[[20]]   MOHANDES M A, HALAWANI T O, REHMAN S, et al. Support vector machines for wind speed prediction[J]. Renewable Energy, 2004, 29(6): 939-947.
[[21]]   刘刚,彭春华,相龙阳.采用改进型多目标粒子群算法的电力系统环境经济调度[J].电网技术,2011,35(7): 139-144. LIU Gang, PENG Chun-hua, XIANG Long-yang. Economic-environmental dispatch using improved multi-objective particle swarm optimization[J]. Power System Technology, 2011, 35(7): 139-144.
[[22]]   RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA: a gravitational search algorithm[J]. Information Science, 2009, 179(13): 2232-2248.
[[23]]   李志刚,吴文传,张伯明,等.一种基于高斯罚函数的大规模无功优化离散变量处理方法[J].中国电机工程学报,2013,33(4):68-76. LI Zhi-gang, WU Wen-chuan, ZHANG Bo-ming, et al. A large-scale reactive power optimization method based on Gaussian penalty function with discrete control variables[J]. Proceedings of the CSEE, 2013, 33(4): 68-76.
[[24]]   王贺,胡志坚,陈珍,等.基于集合经验模态分解和最小二乘向量机的短期风速组合预测[J].电工技术学报,2014,29(4):237-245. WANG He, HU Zhi-jian, CHEN Zhen, et al. A hybrid model for short-term wind speed forecasting based on ensemble empirical mode decomposition and least squares support vector machines[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 237-245.
[1] Chao JI,Liang WANG,Xiao-jing WANG,Xiao-bing LI,Wen CAO. Design of cable tunnel fault warning system based on MSSA-SVM[J]. Chinese Journal of Engineering Design, 2023, 30(1): 109-116.
[2] Hong-jiang LIU,Teng HU,Yong HE,Feng DONG,Wei LUO. Spindle thermal error modeling of NC machine tool based onCSO-SVM[J]. Chinese Journal of Engineering Design, 2022, 29(3): 339-346.
[3] XIAO Zhen, HE Yan, LI Yu-feng, WU Peng-cheng, LIU De-gao, DU Jiang. Application of improved MDSMOTE and PSO-SVM in classification prediction of automobile combination instrument[J]. Chinese Journal of Engineering Design, 2022, 29(1): 20-27.
[4] LIU Yu-jia, PAN Bin, LI Dong-ze, LI Feng-di, ZHANG Qian, SUN Feng-gang, LAN Peng. Design and implementation of unattended intelligent management system for homestay[J]. Chinese Journal of Engineering Design, 2020, 27(3): 389-397.
[5] LI Cheng-bing, YE Chao, MAO Xi-hao. Application of LSSVM optimized by improved artificial bee colony algorithm in quantitative analysis of mixture gas[J]. Chinese Journal of Engineering Design, 2020, 27(1): 94-102.
[6] LU Wan-jie, FU Hua, ZHAO Hong-rui. Equipment recognition of mining patrol robot based on deep learning algorithm[J]. Chinese Journal of Engineering Design, 2019, 26(5): 527-533.
[7] MA Tian-bing, WANG Xiao-dong, DU Fei, WANG Xin-quan. Fault diagnosis for rigid guide based on GA-SVM[J]. Chinese Journal of Engineering Design, 2019, 26(2): 170-176.
[8] CHEN Xiao-Ran, ZHANG Lin-Ke, YAN Zhao-Li, CHEN Jie, CHENG Xiao-Bin. Research on axial flow pump cavitation monitoring method
based on the active ultrasonic detection
[J]. Chinese Journal of Engineering Design, 2011, 18(3): 214-217.
[9] XU Bao-Hua, LI Hong-Ru. Fault prognostics for hydraulic components in missile launcher[J]. Chinese Journal of Engineering Design, 2007, 14(6): 449-452.