Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (1): 107-119    DOI: 10.3785/j.issn.1006-754X.2024.03.314
Industrial Software and Major Equipment Integrated Design     
Design of civil aircraft cabin door operation panel based on ergonomics
Wenjing ZHI1(),Guocai LI1(),Weijuan ZHENG1,Chen ZHANG1,Dongping LIU1,Xiaoyi CAI2
1.Aviation Equipment Research Institute, AVIC Qing'an Group Co. , Ltd. , Xi'an 710077, China
2.College of Mechanical Electronical and Engineering, Harbin Engineering University, Harbin 201210, China
Download: HTML     PDF(4603KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In the current civil aircraft cabin door operation panel design, there is a lack of unified standards and specifications for human-machine efficacy and interface design, and the design process overly relies on personal experience and personal preferences, resulting in poor human-machine efficacy of the designed operation panel during use. For this purpose, the design principles for the display and operation of the civil aircraft cabin door operation panel were discussed based on the ergonomics principle, and a design scheme of centralized cabin door operation panel and regional control panel was proposed. Firstly, the information organization, coding, display elements and display forms of the cabin door operation panel were determined through questionnaire survey. Then, the three-dimensional models of the cabin door operation panel, the regional control panel and the aircraft were conducted. Finally, the ergonomics simulation software DELMIA was used to conduct dynamic operation simulation on the layout, key size and touch area of the operation panel. The simulation results showed that the designed cabin door operation panel could enhance the human-machine efficacy, improve the safety and efficiency of the operation, and reduce the misoperation and workload of flight attendants. The designed operation panel and regional control panel not only realize centralized monitoring and management and regional actuation control for the entire cabin door, but also can be used as a human-machine interaction device, which is suitable for the cabin and cargo hold of large-sized wide-body aircraft in the future, and has a very broad application prospect.



Key wordscivil aircraft      cabin door      operation panel      human-machine efficacy      simulation analysis     
Received: 20 October 2023      Published: 04 March 2024
CLC:  TH 114  
Corresponding Authors: Guocai LI     E-mail: zhiwj001@avic.com;ligc017@avic.com
Cite this article:

Wenjing ZHI,Guocai LI,Weijuan ZHENG,Chen ZHANG,Dongping LIU,Xiaoyi CAI. Design of civil aircraft cabin door operation panel based on ergonomics. Chinese Journal of Engineering Design, 2024, 31(1): 107-119.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.314     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I1/107


基于人机工程学的民用飞机舱门操作面板设计

在当前民用飞机舱门操作面板设计中,人机功效和界面设计缺少统一的标准和规范,设计过程过于依赖个人经验和自身偏好,导致所设计的操作面板在使用过程中人机功效较差。为此,基于人机工程学原理讨论了民用飞机舱门操作面板显示与操作的设计原则,并提出了一种集中式舱门操作面板及区域控制面板的设计方案。首先通过问卷调查来确定舱门操作面板的信息组织、编码、显示元素和显示形式等,然后构建舱门操作面板、区域控制面板以及飞机的三维模型,最后使用人机工程仿真软件DELMIA对操作面板的布置、按键尺寸和触及域进行了动态操作仿真。仿真结果表明,所设计的舱门操作面板增强了人机功效,提高了作业的安全性和效率,减少了空乘人员的误操作和工作负荷。所设计的操作面板和区域控制面板不仅实现了整机舱门的集中监控管理与区域作动控制,还能作为人机交互设备,适用于大中型宽体飞机的客舱和货舱,应用前景十分广阔。


关键词: 民用飞机,  舱门,  操作面板,  人机功效,  仿真分析 
Fig.1 Passenger door operation panel of Airbus A380 aircraft
Fig.2 Aft cargo door operation panel of Boeing B747-800 aircraft
Fig.3 Main cargo door operation panel of Boeing B787 aircraft
Fig.4 Selection process of human-machine interface design criteria for civil aircraft cabin door operation panel
Fig.5 Appearance design for passenger door operation panel
Fig.6 Appearance design of cargo door operation panel
Fig.7 Functional hierarchy of human-machine interface of main display and control panel of cabin door
Fig.8 Layout design and dimensions of passenger door operation panel
评价指标标准值1)测量值满足情况
按键直径D1/mm4.75~12.5011.89满足
按键间距d1/mm1328.06满足
Table 1 Layout verification results of passenger door operation panel
Fig.9 Layout design and dimensions of cargo door operation panel
评价指标标准值1)测量值满足情况
钮子开关臂长L1/mm13~5017.9满足
钮子开关调节角度θ/(°)30~8030满足
钮子开关控制杆顶部直径D2/mm3~256.1满足
按键间距d2/mm1324满足
Table 2 Layout verification results of cargo door operation panel
Fig.10 Technical route of human-machine interface layout design of main display and control panel of cabin door
Fig.11 Human-machine interface layout of main display and control panel of cabin door
评价指标标准值1)测量值满足情况
触摸按键尺寸lw/mm

15 ≤ l ≤ 50

15 ≤ w ≤ 40

l=24.30

w=15.15

满足

满足

触摸按键间距abcdefghijkm/mm3a=7.300满足
b=12.250满足
c=14.350满足
d=4.975满足
e=4.975满足
f=4.975满足
g=13.240满足
h=9.200满足
i=35.910满足
j=5.650满足
k=11.640满足
m=5.650满足
Table 3 Layout verification results of main display and control panel of cabin door
序号图标图标语义语义是否可知
1登机门关闭□可知 □不可知
2货舱门关闭□可知 □不可知
3登机门开启□可知 □不可知
4货舱门开启□可知 □不可知
5白昼模式□可知 □不可知
6夜晚模式□可知 □不可知
Table 4 Survey questionnaire for icon semantics of main display and control panel of cabin door
可用性指标平均分
易学性4.69
易用性4.57
有效性4.67
效率4.54
美观度4.73
可视化程度4.68
操作反馈4.65
用户满意度4.66
Table 5 Score of availability indicators for main display and control panel of cabin door
Fig.12 Visual touch area simulation process for cabin door operation panel
Fig.13 Main dimension parameters of human body
Fig.14 Main dimension parameters of upper human body
尺寸参数P95男P5女
身高177.5148.4
上臂长33.826.2
前臂长25.819.3
大腿长50.540.2
小腿长40.331.3
眼高166.4137.1
肩高145.5119.5
肘高109.689.9
手功能高80.165.0
会阴高85.667.3
胫骨点高48.137.7
Table 6 Values of main dimension parameters of human body
尺寸参数P95男P5女备注
站姿肩高148.0121.5
手功能长79.261.4

操作触摸类设备

操作按键类设备

78.060.2
Table 7 Revised standing height and hand function length
Fig.15 Three-dimensional model of aircraft
操作面板安装位置距客舱地板高度/mm左右两边距离/mm
舱门主显控面板登机门空乘人员座椅上方1 300850
登机门操作面板登机门右侧机身1 300200
货舱门操作面板货舱门右侧机身1 300200
Table 8 Installation position and positioning dimension of three-type cabin door operation panel
Fig.16 P95 male body model
Fig.17 P5 female body model
Fig.18 Simulation results of P95 male touch area of passenger door operation panel
Fig.19 Simulation results of P5 female touch area of passenger door operation panel
Fig.20 Simulation results of P95 male touch area of cargo door operation panel
Fig.21 Simulation results of P5 female touch area of cargo door operation panel
Fig.22 Simulation results of P95 male touch area of main display and control panel of cabin door
Fig.23 Simulation results of P5 female touch area of main display and control panel of cabin door
[1]   宋小青,沈玺.基于人机工程学的控制面板设计研究[J].装备制造技术,2006(4):67-69. doi:10.3969/j.issn.1672-545X.2006.04.028
SONG X Q, SHEN X. Study on control panel design based on ergonomics[J]. Equipment Manufacturing Technology, 2006(4): 67-69.
doi: 10.3969/j.issn.1672-545X.2006.04.028
[2]   纪兵,毛保全.遥控武器站武器系统人机界面初步设计[J].兵工自动化,2009,28(7):89-93. doi:10.3969/j.issn.1006-1576.2009.07.032
JI B, MAO B Q. Pilot design of weapon system man-machine interface for weapon station[J]. Ordnance Industry Automation, 2009, 28(7): 89-93.
doi: 10.3969/j.issn.1006-1576.2009.07.032
[3]   矿英姬.数控机床中人机工学应用研究[D].武汉:华中科技大学,2004:7-16.
KUANG Y J. Application study on NC machine based on ergonomics[D]. Wuhan: Huazhong University of Science & Technology, 2004: 7-16.
[4]   刘瑞康.基于认知机理的船舶监控系统软件界面设计与评价[D].哈尔滨:哈尔滨工程大学,2017:18-34.
LIU R K. The design and evaluation of ship monitoring and control system based on cognitive mechanism[D]. Harbin: Harbin Engineering University, 2017: 18-34.
[5]   丁玉兰.人机工程学[M].5版.北京:北京理工大学出版社,2017:46-57.
DING Y L. Man machine ergonomics[M]. 5th ed. Beijing: Beijing Institute of Technology Press, 2017: 46-57.
[6]   马雨薇.耙吸式挖泥船疏浚监控界面设计与评价[D].哈尔滨:哈尔滨工程大学,2019:10-16.
MA Y W. Design and evaluation of dredging monitoring interface for rake suction dredger[D]. Harbin: Harbin Engineering University, 2019: 10-16.
[7]   王坤茜.基于人机工程学的数控机床控制面板设计[J]. 机械设计与制造工程,2003,32(3):94-96. doi:10.3969/j.issn.1672-1616.2003.03.028
WANG K Q. Design of control panel for NC machine tools based on ergonomics[J]. Machine Design and Manufacturing Engineering, 2003, 32(3): 94-96.
doi: 10.3969/j.issn.1672-1616.2003.03.028
[8]   王保国,王新泉,刘淑艳,等.安全人机工程学[M].2版.北京:机械工业出版社,2022:210-220. doi:10.46234/ccdcw2023.016
WANG B G, WANG X Q, LIU S Y, et al. Safety ergonomics[M]. 2nd ed. Beijing: China Machine Press, 2022: 210-220.
doi: 10.46234/ccdcw2023.016
[9]   孟庆强.基于人机工程学的机械操作面板设计研究[J]. 工业仪表与自动化装置,2011(6):8-10. doi:10.3969/j.issn.1000-0682.2011.06.003
MENG Q Q. The machinery operation panel design and study based on man-machine engineering[J]. Industrial Instrumentation & Automation, 2011(6): 8-10.
doi: 10.3969/j.issn.1000-0682.2011.06.003
[10]   吴潇伟.基于视觉注意机制的船舶导航雷达显控界面设计与评价[D].哈尔滨:哈尔滨工程大学,2019:62-73.
WU X W. Design and evaluation of ship navigation radar display and control interface based on visual attention mechanism[D]. Harbin: Harbin Engineering University, 2019: 62-73.
[11]   童时中,童和钦.电子设备及系统人机工程设计[M].2版.北京:电子工业出版社,2022:55-70.
TONG S Z, TONG H Q. Ergonomic design of electronic equipment and systems[M]. 2nd ed. Beijing: Electronic Industry Press, 2022: 55-70.
[12]   中国航空工业总公司. 飞机座舱信息显示基本要求: [S].北京:航空工业出版社,1998:2-7.
China Aviation Industry Corporation. Basic requirements for aircraft cockpit information display: [S]. Beijing: Aviation Industry Press, 1998: 2-7.
[13]   中国航空工业总公司. 民用飞机货舱舱门设计要求: [S].北京:航空工业出版社,2014:12-17.
China Aviation Industry Corporation. Requirements of cargo door design for civil aircraft: [S]. Beijing: Aviation Industry Press, 2014: 12-17.
[14]   全国人类工效学标准化技术委员会. 系统交互工效学 第11部分 可用性:定义和概念: [S].北京:中国标准出版社,2023:11-16.
National Technical Committee for Standardization of Ergonomics. Ergonomics of human-system interaction—Part 11: usability: definitions and concepts: [S]. Beijing: Standards Press of China,2023: 11-16.
[15]   中国航空工业总公司. 航空装备信息显示人机工程设计准则: [S].北京:航空工业出版社,2012:9-10.
China Aviation Industry Corporation. Human engineering design criteria for information display of aviation equipments: [S]. Beijing: Aviation Industry Press, 2012: 9-10.
[16]   中国航空工业总公司. 航空装备交互与管理人机工程设计准则: [S].北京:航空工业出版社,2012:17-20.
China Aviation Industry Corporation. Human engineering design criteria for user-interface interaction and management of aviation equipments: [S]. Beijing: Aviation Industry Press, 2012: 17-20.
[17]   国家标准化管理委员会. 人机界面标志标识的基本和安全规则 指示器和操作器件的编码规则: [S].北京:中国标准出版社,2010:8-11.
Standardization Administration of China. Basic and safety principles for man-machine interface, marking and identification: coding principles for indicators and actuators: [S]. Beijing: Standards Press of China, 2010: 8-11.
[18]   O'HARA J, BROWN W, LEWIS P, et al. Human- system interface design review guidelines: NUREG-0700, Rev.2 [S]. Washington, DC: United Status Nuclear Regulatory Commission, 2002: 110-120.
[19]   国防科学技术工业委员会. 军事装备和设施的人机工程设计准则: [S].北京:国防工业出版社,1997:12-16.
Commission of Science, Technology and Industry for National Defence. Human engineering design criteria for military equipment and facilities: [S]. Beijing: National Defense Industry Press, 1997: 12-16.
[20]   中国航空工业总公司. 航空装备控制器人机工程设计准则: [S].北京:航空工业出版社,2012:12-16.
China Aviation Industry Corporation. Human engineering design criteria for control of aviation equipments: [S]. Beijing: Aviation Industry Press, 2012: 12-16.
[21]   钮建伟,刘静,冉令华.DELMIA人机工程从入门到精通[M].北京:电子工业出版社,2018:24-27.
NIU J W, LIU J, RAN L H. DELMIA ergonomics from introduction to mastery[M]. Beijing: Electronic Industry Press, 2018: 24-27.
[22]   国家标准化管理委员会. 中国成年人人体尺寸: [S].北京:中国标准出版社,1988:2-10.
Standardization Administration of China. Human dimensions of Chinese adults: [S]. Beijing: Standards Press of China, 1988: 2-10.
[1] Liyong TIAN,Rui TANG,Ning YU,Hongyue CHEN. Design and application of belt lifting mechanism for replacing idler of belt conveyor[J]. Chinese Journal of Engineering Design, 2023, 30(6): 667-677.
[2] Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.
[3] Shao-yu TANG,Jie WU,Hui ZHANG,Bing-bing DENG,Yu-ming HUANG,Hao HUANG. Simulation and experimental research on temperature field of multipole magnetorheological clutch[J]. Chinese Journal of Engineering Design, 2022, 29(4): 484-492.
[4] FAN Xiao-yue, LIU Qi, GUAN Wei, ZHU Yun, CHEN Su-lin, SHEN Bin. Simulation and experimental research on thermal effect of electromagnetic micro hammer peening mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(1): 66-73.
[5] ZHANG Qin, PANG Ye-zhong, WANG Kai. Simulation analysis and experimental research on robot pedaling weeding process[J]. Chinese Journal of Engineering Design, 2021, 28(6): 709-719.
[6] ZHANG Shen-tong. Analysis of landing load of aircraft landing gear based on virtual prototype technology[J]. Chinese Journal of Engineering Design, 2021, 28(6): 758-763.
[7] CHEN Zhen, XIONG Tao, YANG Yan-qing, XUE Xiao-wei. Sealing performance analysis and structure optimization of sealing ring of soluble ball seat[J]. Chinese Journal of Engineering Design, 2021, 28(6): 720-728.
[8] YU Ru-fei, KOU Xin, CHEN Wei. Simulation analysis of novel surface texture based on CFD[J]. Chinese Journal of Engineering Design, 2021, 28(4): 466-472.
[9] WANG Yu-pu, CHENG Wen-ming, DU Run, WANG Shu-biao, YANG Xing-zhou, ZHAI Shou-cai. Simulation analysis of wind load response for large gantry crane[J]. Chinese Journal of Engineering Design, 2020, 27(2): 239-246.
[10] HAO Di-long, HE Xia, WANG Guo-rong, YI Jian-guo, CHEN Zhang-bin. Structure optimization of integral slip groove[J]. Chinese Journal of Engineering Design, 2019, 26(5): 534-543.
[11] WANG Ke-fei, SHI Pei-cheng, PENG Shan-shan, DIAO Jie-sheng. Static stiffness analysis of automotive BIW under different boundary constraint conditions[J]. Chinese Journal of Engineering Design, 2019, 26(4): 441-451.
[12] CHEN Zhao-ming, XU Ze-yu, ZOU Jing-song, ZHAO Ying, SHI Ming-quan. Hydraulic system design of multi-functional laying trolley equipment in tunnel construction and its response characteristic analysis[J]. Chinese Journal of Engineering Design, 2019, 26(1): 116-122.
[13] FAN Shu-yuan, WANG Hai-bo, WU Xiao-di, ZHANG Le, ZHANG Long. Research on load-bearing performance of industrial assembly exoskeleton manipulator[J]. Chinese Journal of Engineering Design, 2018, 25(6): 697-702.
[14] ZHANG Zhao, ZHANG Ji-zhong. Design and dynamic simulation research of self-adaptive bobbin gripper for automatic doffer[J]. Chinese Journal of Engineering Design, 2018, 25(5): 539-545.
[15] LIU Xiao-long, ZHAO Yan-jun, GE Wen-qing, WANG Ying, ZHANG Zhong-dong. Design and dynamics simulation analysis of medical disabled lower limb exoskeleton[J]. Chinese Journal of Engineering Design, 2016, 23(4): 327-332.