1.School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China 2.Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China 3.Shaanxi Huanghe Group Co. , Ltd. , Xi'an 710043, China 4.The 39th Research Institute, China Electronics Technology Group Corporation, Xi'an 710065, China 5.Hubei Ezhou Tianyuan Grinding Wheel Co. , Ltd. , Ezhou 436001, China 6.Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China
Large aperture reflector antenna is the key equipment for deep space exploration and satellite communication. In order to continuously improve the observation performance, the antenna aperture is increasing, and the antenna pointing accuracy requirements are higher and higher. With the increase of antenna aperture, the stiffness of antenna decreases while the windward area increases, which leads to serious flexible deformation of antenna and difficult to guarantee its performance. In order to investigate the influence of flexible deformation of large aperture reflector antenna on electrical performance under ambient wind load, a beam pointing analysis model for antenna is proposed. Firstly, the computational fluid dynamics method was used to numerically simulate the wind pressure distribution on the antenna surface, and the wind pressure coefficient of the antenna surface was obtained. Then, the deformation law of the antenna structure under different wind speed conditions was analyzed by using the independent characteristic of wind pressure coefficient and wind speed. Finally, according to the deformation characteristics of the antenna structure, the variation patterns of gain loss and pointing deviation of the antenna under different working states were analyzed. The results show that the proposed model can quickly evaluate the deformation and beam pointing characteristics of large aperture antennas under wind load, which provides theoretical guidance for the subsequent wind-resistant structure design and system control study of antennas.
Fig.2 Computational domain model of large aperture reflector antenna
俯仰角
反射面正面
反射面背面
5°
15°
30°
45°
60°
75°
90°
Table 1Wind pressure coefficient on antenna reflector surface under different pitch angles
Fig.3 Variation trend of wind pressure coefficient on antenna reflector panel surface with pitch angles
Fig.4 Approximate calculation of average wind pressure coefficient for antenna reflector surface
Fig.5 Deformation of antenna reflector under different pitch angles
Fig.6 Extreme value of deformation of antenna reflector under different pitch angles
Fig.7 RMSE of antenna reflector deformation under different wind speeds and pitch angles
Fig.8 Analysis process for beam pointing of large aperture reflector antennas
Fig.9 Directional pattern of antenna at 6m/s wind speed
Fig.10 Gain loss of antenna at 6 m/s wind speed
Fig.11 Variation of the first sublobe level of antenna at 6 m/s wind speed
[1]
严粤飞,王从思,李帅,等.大型射电望远镜天线发展动态及机电耦合应用[J].中国科学:物理学 力学 天文学,2022,52(12):129501. doi:10.1360/sspma-2022-0121 YAN Y F, WANG C S, LI S, et al. Development of large-aperture radio telescopes and applications of coupled structural-electromagnetic theory[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2022, 52(12): 129501.
doi: 10.1360/sspma-2022-0121
[2]
王从思,肖岚,项斌斌,等.大型射电望远镜天线主动面补偿研究进展[J].中国科学:物理学 力学 天文学,2017,47(5):059503. doi:10.1360/sspma2017-00011 WANG C S, XIAO L, XIANG B B, et al. Development of active surface technology of large radio telescope antennas[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2017, 47(5): 059503.
doi: 10.1360/sspma2017-00011
[3]
张增太.风载荷在雷达天线结构设计中的考虑[J].雷达科学与技术,1997(4):58-61. ZHANG Z T. Consideration of wind load in radar antenna structure design[J]. Radar Science and Technology, 1997(4): 58-61.
[4]
OLMI L, MAUSKOPF P D. A comparison of radome- and astrodome-enclosed large radio telescopes at millimeter wavelengths: the large millimeter telescope[J]. Radio Science, 1999, 34(3): 733-746.
[5]
KIM J K, PARK S, JIN T. Simplified fuzzy-PID controller of data link antenna system for moving vehicles[C]//PRICAI'06: Proceedings of the 9th Pacific Rim International Conference on Artificial Intelligence. Heidelberg: Springer-Verlag, 2006: 1083-1088.
[6]
GAWRONSKI W. Antenna control systems: from PI to H∞[J]. IEEE Antennas and Propagation Magazine, 2001, 43(1): 52-60.
[7]
LIN J M, CHANG P K. Intelligent PD-type fuzzy controller design for mobile satellite antenna tracking system with parameter variations effect[C]// Computational Intelligence in Control and Automation (CICA), Paris, Apr. 11-15, 2011.
[8]
TANG T, NIU S X, MA J G, et al. A review on control methodologies of disturbance rejections in optical telescope[J]. Opto-Electronic Advances, 2019, 2(10): 190011.
[9]
TAMURA T, NOZAWA K, KONDO K. AIJ guide for numerical prediction of wind loads on buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11): 1974-1984.
[10]
YOUNG D, DAVID S. Numerical simulations of airflow in telescope enclosures[J]. The Astronomical Journal, 1996, 112: 2896.
[11]
DU Q, DU P A. Computation of fluctuating wind pressure and wind loads on phased-array antennas[J]. IEEE Antennas and Propagation Magazine, 2012, 54(1): 66-75.
[12]
杜强.雷达天线风载特性的数值计算方法及应用研究[D].成都:电子科技大学,2011:21-34. DU Q. Research and application on numerical method for characteristic computation of wind loads on radar antennas[D]. Chengdu: University of Electronic Science and Technology of China, 2011: 21-34.
[13]
王春圆.巨型射电望远镜风荷载特性的数值模拟研究[D].哈尔滨:哈尔滨工业大学,2012:76-85. WANG C Y. Numerical simulation study on characteristics of wind loads of huge radio telescope[D]. Harbin: Harbin Institute of Technology, 2012: 76-85.
[14]
刘岩,钱宏亮,范峰.大型射电望远镜结构风荷载特性研究[J].红外与激光工程,2015,44(1):148-156. doi:10.3969/j.issn.1007-2276.2015.01.026 LIU Y, QIAN H L, FAN F. Wind load characteristics of large radio telescope[J]. Infrared and Laser Engineering, 2015, 44(1): 148-156.
doi: 10.3969/j.issn.1007-2276.2015.01.026
[15]
LADD J, SLOTNICK J, NORBY W, et al. Computational fluid dynamics modeling and analysis for the Giant Magellan Telescope (GMT)[C]//SPIE Astronomical Telescopes + Instrumentation, Edinburgh, Jun. 26-Jul. 1, 2016.
[16]
纪兵兵,陈金瓶.ANSYS ICEM CFD网格划分技术实例详解[M].北京:中国水利水电出版社,2012:67-99. JI B B, CHEN J P. Detailed explanation of ANSYS ICEM CFD mesh division technology example[M]. Beijing: China Water & Power Press, 2012: 67-99.
[17]
林斌.CFD模拟技术在大型复杂结构工程中的应用[D].哈尔滨:哈尔滨工业大学,2005:42-70. LIN B. Application of CFD simulation technology in large and complex structural engineering[D]. Harbin: Harbin Institute of Technology, 2005: 42-70.
[18]
王娜.新疆奇台110米射电望远镜[J].中国科学:物理学 力学 天文学,2014,44(8):783-794. doi:10.1360/sspma2014-00039 WANG N. Xinjiang Qitai 110 m radio telescope[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 44(8): 783-794.
doi: 10.1360/sspma2014-00039
[19]
RAHMAT-SAMII Y. A comparison between GO/aperture-field and physical-optics methods of offset reflectors[J]. IEEE Transactions on Antennas and Propagation, 1984, 32(3): 301-306.
[20]
张洁.大型反射面天线抗风扰控制补偿关键技术研究[D].西安:西安电子科技大学,2016:60-100. ZHANG J. Research on key technologies of control compensation for large antenna under wind disturbance[D]. Xi’an: Xidian University, 2016: 60-100.