Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (5): 708-719    DOI: 10.3785/j.issn.1006-754X.2025.05.117
机械零部件与装备设计     
运营铁路隧道治理专用凿毛装置的设计与运动学分析
周扬1(),易勇2,罗舟2,宁智1,尹来容1()
1.长沙理工大学 机械与运载工程学院,湖南 长沙 410114
2.中国中铁五局集团有限公司,湖南 长沙 410000
Design and kinematic analysis of special scabbling device for operational railway tunnel maintenance
Yang ZHOU1(),Yong YI2,Zhou LUO2,Zhi NING1,Lairong YIN1()
1.College of Mechanical and Vehicle Engineering, Changsha University of Science & Technology, Changsha 410114, China
2.China Railway No. 5 Engineering Group Co. , Ltd. , Changsha 410000, China
 全文: PDF(4814 KB)   HTML
摘要:

针对运营铁路隧道治理天窗期短、人工凿毛效率低及定向专用设备缺乏等问题,基于隧道整治施工需求开发了一种隧道治理专用的凿毛装置。首先,根据凿毛作业要求确定了凿毛装置的结构为机械臂结合剪叉式提升架,并适配设计了固定连接型与铰接型凿毛机构。然后,通过改进D-H(Denavit-Hartenberg)参数法建立了凿毛装置运动学模型,开展了正、逆运动学分析,并采用蒙特卡洛法求解了凿毛装置的工作空间。最后,对凿毛装置的作业过程进行了运动轨迹规划分析,利用五次多项式插值法进行关节空间点到点轨迹规划,并利用基于S形加减速控制算法的平面圆弧插补方法进行笛卡儿空间指定路径规划。结果表明,所设计的凿毛装置的整体结构及工作空间符合设计要求,且运动性能良好;通过运动轨迹规划分析有效地减少了凿毛装置作业过程中的运动冲击与振动,保证了凿毛作业的安全性。研究结果为后续的凿毛装置实物样机制造与凿毛作业试验提供了理论基础。

关键词: 铁路隧道凿毛装置S形加减速控制算法运动学分析运动轨迹规划    
Abstract:

In response to the issues of the short window period for tunnel maintenance in operational railway, the low efficiency of manual scabbling, and the lack of directional specialized equipment, a dedicated scabbling device for tunnel maintenance has been developed based on the construction requirements of tunnel renovation. Firstly, according to the scabbling operation requirements, the structure of the scabbling device was determined as a robotic arm combined with a scissor lift frame, and the fixed-connection and articulated scabbling mechanisms were designed. Then, the kinematic model of the scabbling device was established by improved D-H (Denavit-Hartenberg) parameter method for forward and inverse kinematic analyses, and the workspace of the scabbling device was solved by using the Monte Carlo method. Finally, the motion trajectory planning analysis for the scabbling device operation process was performed. The fifth-degree polynomial interpolation method was applied for the point-to-point trajectory planning in joint space, and the planar circular interpolation method based on the S-curve acceleration and deceleration control algorithm was used for the designated path planning in Cartesian space. The results showed that the overall structure and workspace of the designed scabbling device met the design requirements, and this device performed well in terms of motion. Through the motion trajectory planning analysis, the motion impact and vibration during the scabbling device operation process were effectively reduced, which ensured the safety of the scabbling operation. The research results provide a theoretical foundation for the subsequent physical scabbling device prototype manufacturing and scabbling operation testing.

Key words: railway tunnel    scabbling device    S-curve acceleration and deceleration control algorithm    kinematic analysis    motion trajectory planning
收稿日期: 2025-02-28 出版日期: 2025-10-31
CLC:  U 457.2  
基金资助: 国家自然科学基金面上项目(52175003);中国中铁股份有限公司科技研究开发计划重点课题(2022-重点-10);湖南省科技创新领军人才项目(2024RC1054)
通讯作者: 尹来容     E-mail: zhou_yang0412@163.com;yinlairong@hotmail.com
作者简介: 周 扬(2000—),男,硕士生,从事工程装备开发研究,E-mail: zhou_yang0412@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周扬
易勇
罗舟
宁智
尹来容

引用本文:

周扬,易勇,罗舟,宁智,尹来容. 运营铁路隧道治理专用凿毛装置的设计与运动学分析[J]. 工程设计学报, 2025, 32(5): 708-719.

Yang ZHOU,Yong YI,Zhou LUO,Zhi NING,Lairong YIN. Design and kinematic analysis of special scabbling device for operational railway tunnel maintenance[J]. Chinese Journal of Engineering Design, 2025, 32(5): 708-719.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.117        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I5/708

图1  各类隧道衬砌内轮廓结构
图2  凿毛装置整体结构尺寸
图3  凿毛装置工作空间划分
图4  凿毛装置三维模型
图5  凿毛装置连杆坐标系
连杆iαi-1j/(°)ai-1j/mmdij/mmθij/(°)
1-900d1jθ1j(-110.95~-15.75)
20a1j0θ2j(0~88.25)
30a2j0θ3j(-30~11)
40a3j00
表1  铰接型凿毛装置的D-H参数
连杆iαi-1g/(°)ai-1g/mmdig/mmθig/(°)
100d1g(1 300~3 730)0
2-9000θ2g(-110.95~-15.75)
30a2g0θ3g(0~88.25)
40a3g00
表2  固定连接型凿毛装置的D-H参数
图6  凿毛装置各连杆的几何关系
图7  基于蒙特卡洛法的凿毛装置工作空间求解流程
图8  凿毛装置工作空间
图9  250 km/h单线隧道衬砌内轮廓结构尺寸
图10  凿毛作业关键位姿
运动阶段轨迹点关节位置/(°)或mm关节速度/[(°)/s]或(mm/s)关节加速度/[(°)/s2]或(mm/s2)对应时刻/s
θ1jd1gθ2jθ2gθ3jθ3gθ˙1jd˙1gθ˙2jθ˙2gθ˙3jθ˙3gθ¨1jd¨1gθ¨2jθ¨2gθ¨3jθ¨3g
第1阶段1-4585110000000
2-24.1852.7311310-11010
3-19.4953.94-14.4700000015
第3阶段1-24.0218.2010.1300000049.61
2-26.0921.3511-240-0.82.5055
3-45851100000065
第5阶段11 300-458500000075
21 300-46.2750.5700000090
表3  关节空间点到点轨迹规划的运动信息
图11  平面圆弧插补示意
图12  S形加减速曲线
运动阶段最大加加速度jm/[(°)/s3]

最大加速度am/

[(°)/s2]

最大速度vm/

[(°)/s]

圆弧起始角度α/(°)圆弧圆心角β/(°)
第2阶段0.20.250.5-19.9915.68
第6阶段0.20.251.0-4.3124.31
0.20.401.020.0050.53
表4  笛卡儿空间指定路径规划的运动信息
图13  凿毛装置各关节的运动学参数变化曲线
图14  凿毛装置末端的运动轨迹
  
  
[1] 李喆, 江媛, 姜礼杰, 等. 我国隧道和地下工程施工技术与装备发展战略研究[J]. 隧道建设(中英文), 2021, 41(10): 1717-1732.
LI Z, JIANG Y, JIANG L J, et al. Research on development strategy of tunnel and underground construction technology and equipment in China[J]. Tunnel Construction, 2021, 41(10): 1717-1732.
[2] 巩江峰, 王伟, 王芳, 等. 截至2023年底中国铁路隧道情况统计及2023年新开通重点项目隧道情况介绍[J]. 隧道建设(中英文), 2024, 44(2): 377-392.
GONG J F, WANG W, WANG F, et al. Statistics of China's railway tunnels by the end of 2023 and overview of tunnels of key new projects in 2023[J]. Tunnel Construction, 2024, 44(2): 377-392.
[3] 《中国公路学报》编辑部. 中国交通隧道工程学术研究综述·2022[J]. 中国公路学报, 2022, 35(4): 1-40.
Editorial Department of China Journal of Highway and Transport. Review on China's traffic tunnel engineering research: 2022[J]. China Journal of Highway and Transport, 2022, 35(4): 1-40.
[4] HAN W, JIANG Y J, WANG G, et al. Review of health inspection and reinforcement design for typical tunnel quality defects of voids and insufficient lining thickness[J]. Tunnelling and Underground Space Technology, 2023, 137: 105110.
[5] 田雪豪, 宋丹, 江帅, 等. 运营铁路隧道套衬施工机械化配套研究与应用[J]. 隧道建设(中英文), 2024, 44(2): 368-376.
TIAN X H, SONG D, JIANG S, et al. Research and application for mechanization of lining construction of operating railway tunnels[J]. Tunnel Construction, 2024, 44(2): 368-376.
[6] 田四明, 王伟, 杨昌宇, 等. 中国铁路隧道40年发展与展望[J]. 隧道建设(中英文), 2021, 41(11): 1903-1930.
TIAN S M, WANG W, YANG C Y, et al. Development and prospect of railway tunnels in China in recent 40 years[J]. Tunnel Construction, 2021, 41(11): 1903-1930.
[7] 李夏利. 基于深度学习的隧道衬砌病害识别和分类研究[D]. 南京: 南京邮电大学, 2021.
LI X L. Research on recognition and classification of tunnel lining diseases based on deep learning[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2021.
[8] 段炼, 李永恒, 伍江航, 等. HTG隧道衬砌病害调查及成因机理分析[J]. 现代隧道技术, 2022, 59(): 727-734.
DUAN L, LI Y H, WU J H, et al. Investigation and cause analysis of HTG tunnel lining defects[J]. Modern Tunnelling Technology, 2022, 59(): 727-734.
[9] 高菊茹, 贵逢涛, 袁玮, 等. 既有线铁路隧道病害整治技术与设备发展现状[J]. 现代隧道技术, 2018, 55(1): 7-16.
GAO J R, GUI F T, YUAN W, et al. State of the art of techniques and equipment for defect remediation in existing railway tunnels[J]. Modern Tunnelling Technology, 2018, 55(1): 7-16.
[10] 刘飞香. SCDZ133智能型隧道多功能作业台车及其施工技术[J]. 现代隧道技术, 2019, 56(4): 1-7.
LIU F X. SCDZ133 intelligent multi-function trolley and its application in tunnelling[J]. Modern Tunnelling Technology, 2019, 56(4): 1-7.
[11] 龚成明, 朱嘉斌, 代鸿明. 一种可带模注浆的新型铁路隧道衬砌台车[J]. 现代隧道技术, 2016, 53(4): 185-188, 194.
GONG C M, ZHU J B, DAI H M. A new type of railway tunnel lining jumbo with grouting through molds[J]. Modern Tunnelling Technology, 2016, 53(4): 185-188, 194.
[12] 袁玮, 李林, 高红兵. 地质雷达法隧道衬砌质量检测台车设计研究[J]. 现代隧道技术, 2019, 56(): 179-184.
YUAN W, LI L, GAO H B. Study on the design of tunnel lining quality inspection trolley based on geological radar method[J]. Modern Tunnelling Technology, 2019, 56(): 179-184.
[13] 江桁, 刘学增, 朱合华. 基于隧道快速检测车数据的公路隧道衬砌开裂识别模型研究[J]. 现代隧道技术, 2020, 57(5): 61-65.
JIANG H, LIU X Z, ZHU H H. Research on crack identification of highway tunnel linings based on data obtained from the testing vehicle[J]. Modern Tunnelling Technology, 2020, 57(5): 61-65.
[14] 龚彦峰, 肖明清, 王少锋, 等. 铁路隧道检测技术现状及发展趋势[J]. 铁道标准设计, 2019, 63(5): 93-98.
GONG Y F, XIAO M Q, WANG S F, et al. Review and developing trend of railway tunnel detection technology[J]. Railway Standard Design, 2019, 63(5): 93-98.
[15] 高菊茹, 袁玮, 张龙, 等. 运营隧道病害整治设备的发展研究[J]. 现代隧道技术, 2019, 56(): 34-40.
GAO J R, YUAN W, ZHANG L, et al. Research of equipments for disease remediation in operation tunnels[J]. Modern Tunnelling Technology, 2019, 56(): 34-40.
[16] 施芸, 杨凌武, 胡明华, 等. 既有线隧道病害整治智能切槽机器人系统研制与应用[J]. 现代隧道技术, 2021, 58(5): 221-226, 236.
SHI Y, YANG L W, HU M H, et al. Research, development and application of an intelligent grooving robot system for defect remediation in existing railway tunnels[J]. Modern Tunnelling Technology, 2021, 58(5): 221-226, 236.
[17] 张龙, 高菊茹, 袁玮. 既有铁路隧道衬砌钢拱架安装槽快速开槽技术综述[J]. 隧道建设(中英文), 2019, 39(8): 1365-1371.
ZHANG L, GAO J R, YUAN W. Rapid grooving technology for steel arch installation grooves on lining of existing railway tunnel[J]. Tunnel Construction, 2019, 39(8): 1365-1371.
[18] 刘璟铮. 隧道衬砌切割机械臂结构设计与动力学分析[D]. 石家庄: 石家庄铁道大学, 2023.
LIU J Z. Structural design and dynamic analysis of tunnel lining cutting manipulator[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2023.
[19] 张龙, 袁玮, 张博, 等. 运营铁路隧道维护关键设备研制及施工工艺研究[J]. 现代隧道技术, 2022, 59(): 1017-1022.
ZHANG L, YUAN W, ZHANG B, et al. Research and development of the key equipment and construction technology for the maintenance of operating railway tunnels[J]. Modern Tunnelling Technology, 2022, 59(): 1017-1022.
[20] 李荆, 吴海龙, 何前途, 等. 基于AHP-TRIZ的铁路运营隧道病害治理台车方案设计研究[J]. 隧道建设(中英文), 2024, 44(4): 801-809.
LI J, WU H L, HE Q T, et al. Scheme design of trolley for disease control of operational railway tunnel based on analytic hierarchy process-TRIZ[J]. Tunnel Construction, 2024, 44(4): 801-809.
[21] 朱永全, 宋玉香. 隧道工程[M]. 4版. 北京: 中国铁道出版社, 2021.
ZHU Y Q, SONG Y X. Tunnel engineering[M]. 4th ed. Beijing: China Railway Publishing House, 2021.
[22] 中国国家铁路集团有限公司. 隧道防护门: [S]. 北京: 中国铁道出版社, 2019.
China State Railway Group Co., Ltd. Tunnel protection door: [S]. Beijing: China Railway Publishing House, 2019.
[23] KHALIL W, DOMBRE E. Modeling, identification and control of robots[M]. Oxford: Butterworth-Heinemann, 2004.
[24] KANG D A, WANG B M, HUANG C, et al. Design and analysis of redundant electro-hydraulic-driven manipulator for tokamak vacuum vessel[J]. Fusion Engineering and Design, 2024, 203: 114448.
[25] 陈佳. 仿生四足机器人三关节单腿轨迹研究[D]. 昆明: 昆明理工大学, 2022.
CHEN J. Research on three-joint and one-leg trajectory of quadruped bionic robot[D]. Kunming: Kunming University of Science and Technology, 2022.
[26] 孙宪超. 湿喷机械臂自动化作业策略与轨迹规划研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
SUN X C. Research on automatic operation strategy and trajectory planning of shotcrete manipulator[D]. Harbin: Harbin Institute of Technology, 2021.
[27] FANG Y, GU C C, ZHAO Y D, et al. Smooth trajectory generation for industrial machines and robots based on high-order S-curve profiles[J]. Mechanism and Machine Theory, 2024, 201: 105747.
[28] 赵业和. 基于路径连续性的机械臂分段作业轨迹规划技术及应用[D]. 杭州: 浙江大学, 2023.
ZHAO Y H. Trajectory planning technology and application of manipulator segmented operation based on path continuity[D]. Hangzhou: Zhejiang University, 2023.
[1] 邓华成,康辉梅,朱振新,唐溪林. 新型桩架多级变幅机构运动学分析[J]. 工程设计学报, 2024, 31(6): 784-792.
[2] 李新革,廖红玉,周敏,陈萌萌,谢良喜. 抹灰机摆动喷涂机构创新设计与分析[J]. 工程设计学报, 2024, 31(2): 248-253.
[3] 畅博彦,闫圣杰,梁栋,关鑫,韩芳孝. 具有变泊松运动特性的剪叉式折展机构运动学分析[J]. 工程设计学报, 2024, 31(1): 20-30.
[4] 陈明方,黄良恩,张永霞,姚国一. 3-PUU并联机构的运动学分析与验证[J]. 工程设计学报, 2023, 30(6): 763-778.
[5] 张鹏程,牛建业,刘承磊,宋井科,王立鹏,张建军. 牵引式下肢康复机器人机构参数优化及轨迹规划[J]. 工程设计学报, 2022, 29(6): 695-704.
[6] 张春燕,丁兵,何志强,杨杰. 转盘式多足仿生机器人的运动学分析及优化[J]. 工程设计学报, 2022, 29(3): 327-338.
[7] 陈致, 张春燕, 蒋新星, 朱锦翊, 卢晨晖. 一种可重构的空间开/闭链6R移动并联机构的设计与分析[J]. 工程设计学报, 2021, 28(4): 511-520.
[8] 傅旻, 李晨曦, 郑兆启. 半自动拧取式菠萝采摘收集机的设计与分析[J]. 工程设计学报, 2020, 27(4): 487-497.
[9] 李静, 朱凌云, 苟向锋. 基于人机闭链的下肢康复外骨骼机构运动学分析[J]. 工程设计学报, 2019, 26(1): 65-72,109.
[10] 阴贺生, 张秋菊, 宁萌. 全向移动机器人驱动轮同步转向机构设计[J]. 工程设计学报, 2018, 25(2): 230-236.
[11] 王慰军, 杨桂林, 张驰, 陈庆盈. 全向移动机器人驱动万向轮的设计与实现[J]. 工程设计学报, 2016, 23(6): 633-638.
[12] 束智伟,陈新元,邓江洪,詹小辉. 连铸结晶器加渣机布料区域矩形化补偿机构设计[J]. 工程设计学报, 2015, 22(5): 420-424.
[13] 刘方圆,吕传毅,贺 磊. 模块化护理床的下肢机构设计与运动分析[J]. 工程设计学报, 2014, 21(6): 583-588.
[14] 谢俊, 刘月, 肖朝蓬, 杨启志, 邓辉. 三自由度并联物料振动分拣平台机构设计及运动仿真[J]. 工程设计学报, 2013, 20(6): 501-506.
[15] 邱可, 赵永杰, 路松. 三转动数控台跃度逆解分析[J]. 工程设计学报, 2013, 20(2): 131-134.