Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (6): 784-792    DOI: 10.3785/j.issn.1006-754X.2024.14.06
【特约专栏】“2024’工程机械行业科技节”成果展示——创新技术及其应用     
新型桩架多级变幅机构运动学分析
邓华成1(),康辉梅1(),朱振新2,3,唐溪林1
1.湖南师范大学 工程与设计学院,湖南 长沙 410081
2.山河智能装备股份有限公司 国家级企业技术中心,湖南 长沙 410100
3.地下工程装备湖南省工程研究中心,湖南 长沙 410100
Kinematics analysis of novel multi-stage luffing mechanism of piling rig
Huacheng DENG1(),Huimei KANG1(),Zhenxin ZHU2,3,Xilin TANG1
1.College of Engineering and Design, Hunan Normal University, Changsha 410081, China
2.National Enterprise Technology Center, Sunward Intelligent Equipment Co. , Ltd. , Changsha 410100, China
3.Hunan Provincial Engineering Research Center for Underground Engineering Equipment, Changsha 410100, China
 全文: PDF(2123 KB)   HTML
摘要:

为了改善桩架的受力情况,提出了一种新型桩架多级变幅机构。该机构能有效减小前液压缸的弯矩,提高桩架在作业时的稳定性。首先,建立了空间坐标系,分析了该机构空间位置的正解和反解,继而推导出速度雅可比矩阵和加速度海森矩阵,得到了该机构的运动学模型;其次,根据变幅条件设定了机构参数和液压缸位移函数后,采用MATLAB软件分析了机构的运动特性,确定了液压缸收缩动作的衔接方式,并进一步分析了机构参数对变幅运动的影响;最后,将机构变幅运动的ADAMS仿真结果与理论分析结果进行对比。结果表明:所构建的多级变幅机构的运动学模型正确;机构可以平稳地将立柱从水平变幅至竖直,变幅过程中滑块始终上移,变幅后连杆与前液压缸垂直;在前液压缸减速收缩的同时进行后液压缸加速收缩有利于变幅平稳。研究结果可为新型桩架多级变幅机构的动力学分析和优化设计提供参考。

关键词: 桩架变幅机构运动学分析参数设计仿真    
Abstract:

In order to improve the stress condition of piling rig, a novel multi-stage luffing mechanism of piling rig was proposed. The mechanism could effectively reduce the bending moment of the front hydraulic cylinder and improve the stability of piling rig during operation. Firstly, the spatial coordinate system was established, and the forward and inverse solutions of the spatial position of the mechanism were analyzed, and then the velocity Jacobian matrix and acceleration Hessian matrix were derived, and the kinematics model of the mechanism was obtained. Secondly, after the mechanism parameters and the displacement function of the hydraulic cylinder were set according to the luffing conditions, the motion characteristics of the mechanism were analyzed using MATLAB software, the connection mode of the hydraulic cylinder contraction was determined, and the influence of the mechanism parameters on the luffing motion was further analyzed. Finally, the ADAMS simulation results of luffing motion of the mechanism were compared with the theoretical analysis results. The results showed that the kinematics model of the multi-stage luffing mechanism was correct. The mechanism could steadily luff the column from horizontal to vertical, the slider always moved upward during the luffing process, and the connecting rod after luffing was vertical to the front hydraulic cylinder. Accelerating contraction of the rear hydraulic cylinder while decelerating contraction of the front hydraulic cylinder was conducive to stable luffing. The research results can provide a reference for the dynamics analysis and optimal design of the novel multi-stage luffing mechanism of piling rig.

Key words: piling rig    luffing mechanism    kinematics analysis    parameter design    simulation
收稿日期: 2024-04-17 出版日期: 2024-12-31
CLC:  TH 113.2  
基金资助: 国家自然科学基金资助项目(51775185)
通讯作者: 康辉梅     E-mail: 3046371611@qq.com;plum_007@sina.com
作者简介: 邓华成(2001—),男,硕士生,从事机构动力学及仿真研究,E-mail: 3046371611@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邓华成
康辉梅
朱振新
唐溪林

引用本文:

邓华成,康辉梅,朱振新,唐溪林. 新型桩架多级变幅机构运动学分析[J]. 工程设计学报, 2024, 31(6): 784-792.

Huacheng DENG,Huimei KANG,Zhenxin ZHU,Xilin TANG. Kinematics analysis of novel multi-stage luffing mechanism of piling rig[J]. Chinese Journal of Engineering Design, 2024, 31(6): 784-792.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.14.06        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I6/784

图1  桩架变幅机构示意图
图2  构件弯矩示意图
图3  新型桩架多级变幅机构运动简图1—立柱;2—前液压缸;3—变幅架;4—后液压缸;5—连杆;6—滑块。
参数数值
l1/m16.8
l2/m3.054
l3/m1.430 73
a1/m1.276 79
a2/m5.622 81
a3/m2
a4/m5.04
α0/(°)0
β0/(°)67
θ1/(°)16.38
θ2/(°)5.17
表1  多级变幅机构参数
图4  多级变幅机构加速度和角加速度曲线
图5  衔接方式2下多级变幅机构速度和角速度曲线
图6  衔接方式2下多级变幅机构的位置曲线
图7  多级变幅机构参数对αmax的影响
图8  多级变幅机构ADAMS仿真模型
图9  多级变幅机构位置仿真曲线
图10  多级变幅机构速度和角速度仿真曲线
图11  多级变幅机构加速度和角加速度仿真曲线
1 刘古岷, 王渝, 胡国庆, 等. 桩工机械[M]. 北京: 机械工业出版社, 2001.
LIU G M, WANG Y, HU G Q, et al. Piling machinery[M]. Beijing: China Machine Press, 2001.
2 陶宁. 桩架立柱结构优化设计[D]. 长沙: 湖南师范大学, 2021.
TAO N. Structural optimization design of the mast of pile frame[D]. Changsha: Hunan Normal University, 2021.
3 徐建,郭传新.全液压履带式桩架的研发与应用[C]//中国建筑学会地基基础学术大会论文集(2022). 北京:中国建筑出版传媒有限公司,2023. doi:10.52202/070275-0129
XU J, GUO C X. Development and application of hydraulic crawler piling rig[C]//Proceedings of the Chinese Society of Architecture Foundation Academic Conference (2022). Beijing:China Architecture Publishing Media Co., Ltd., 2023.
doi: 10.52202/070275-0129
4 张希恒, 赵永刚, 陈建业. 步履式打桩架立柱受力分析计算[J]. 甘肃科技, 2004, 20(5): 96-97.
ZHANG X H, ZHAO Y G, CHEN J Y. Analysis and calculation of the force on the column of the walking piling rig[J]. Gansu Science and Technology, 2004, 20(5): 96-97.
5 张希恒, 陈建业, 赵永刚. 步履式打桩架立柱稳定性分析[J]. 甘肃科学学报, 2004, 16(4): 99-101.
ZHANG X H, CHEN J Y, ZHAO Y G. Stability analysis of the leader of the walking pile frame[J]. Journal of Gansu Sciences, 2004, 16(4): 99-101.
6 曾礼平. 基于CAE技术的打桩机桩架结构分析及优化设计[D]. 南京: 南京航空航天大学, 2012.
ZENG L P. Structural analysis and optimal design of pile driver frame based on CAE technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
7 刘振东, 赵文欣, 赵伟民. 桩架的起架油缸铰座的分析计算[J]. 科学技术与工程, 2012, 12(12): 2942-2946. doi:10.3969/j.issn.1671-1815.2012.12.039
LIU Z D, ZHAO W X, ZHAO W M. The analysis and calculation of the oil cylinder in raising pillar hinged shaft pedestal of pile frame[J]. Science Technology and Engineering, 2012, 12(12): 2942-2946.
doi: 10.3969/j.issn.1671-1815.2012.12.039
8 安治鹏. 某履带式桩架稳定性研究及部分结构仿真分析[D]. 北京: 北京林业大学, 2017.
AN Z P. Study on integral stability and part of the crawler pile frame simulation analysis[D]. Beijing: Beijing Forestry University, 2017.
9 钱奂云, 邓超, 刘进学, 等. 大型全液压履带桩架的技术创新与产品开发(续)[J]. 建筑机械, 2017(9): 17-21.
QIAN H Y, DENG C, LIU J X, et al. Technical innovation and product development of large-scale fully hydraulic crawler piling rig (continued)[J]. Construction Machinery, 2017(9): 17-21.
10 顾林坤, 郭勇, 钱奂云, 等. 大型桩架多缸立桅机构设计与分析[J]. 机械设计, 2017, 34(4): 7-11.
GU L K, GUO Y, QIAN H Y, et al. Design and analysis of multiple hydraulic cylinder mast erecting mechanism for large pile frame[J]. Journal of Machine Design, 2017, 34(4): 7-11.
11 曹博, 朱建新, 朱振新. 桩架新型变幅机构的动力学分析[J]. 机械科学与技术, 2020, 39(4): 501-507.
CAO B, ZHU J X, ZHU Z X. Dynamic analysis of new variable amplitude mechanism of pile frame[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(4): 501-507.
12 朱振新, 朱建新, 唐博豪, 等. 多级组合型大角度变幅机构的动力学特性[J]. 中南大学学报(自然科学版), 2019, 50(6): 1334-1342.
ZHU Z X, ZHU J X, TANG B H, et al. Dynamics characteristics of multi-stage combined type large angle luffing mechanism[J]. Journal of Central South University (Science and Technology), 2019, 50(6): 1334-1342.
13 ZHU Z X, ZHU J X, KANG H M, et al. Dynamic modeling of a series multi closed chain two degree of freedom variable amplitude mechanism[J]. Journal of Central South University, 2021, 28(1): 168-178.
14 康辉梅, 朱建新, 王石林. 混合链式液压调平机构的动力学特性[J]. 中南大学学报(自然科学版), 2019, 50(3): 557-563.
KANG H M, ZHU J X, WANG S L. Dynamic characteristic of hydraulic leveling mechanism with a hybrid kinematic chain[J]. Journal of Central South University (Science and Technology), 2019, 50(3): 557-563.
15 康辉梅, 许怡赦, 金耀. 伸缩臂叉装车工作装置运动学分析[J]. 机械设计, 2015, 32(5): 39-42.
KANG H M, XU Y S, JIN Y. Kinematic analysis for working device of telehandler[J]. Journal of Machine Design, 2015, 32(5): 39-42.
16 陈明方, 黄良恩, 张永霞, 等. 3-PUU并联机构的运动学分析与验证[J]. 工程设计学报, 2023, 30(6): 763-778. doi:10.3785/j.issn.1006-754X.2024.03.157
CHEN M F, HUANG L G, ZHANG Y X, et al. Kinematics analysis and validation of 3-PUU parallel mechanism[J]. Chinese Journal of Engineering Design, 2023, 30(6): 763-778.
doi: 10.3785/j.issn.1006-754X.2024.03.157
17 赵万博, 陈赛旋, 姜官武, 等. 新型线驱动式微创手术器械结构设计与运动学分析[J]. 工程设计学报, 2023, 30(6): 657-666. doi:10.3785/j.issn.1006-754X.2023.03.131
ZHAO W B, CHEN S X, JIANG G W, et al. Structural design and kinematics analysis of new cable-driven minimally invasive surgical instrument[J]. Chinese Journal of Engineering Design, 2023, 30(6): 657-666.
doi: 10.3785/j.issn.1006-754X.2023.03.131
[1] 许顺海,周小磊,龚国芳,洪昊岑,张鹏,刘尚,范亚磊. 基于剩余寿命的柱塞泵可再制造性评估[J]. 工程设计学报, 2024, 31(5): 557-564.
[2] 杨培,张明路,孙凌宇. 爬壁机器人磁吸附模块设计分析与结构参数优化[J]. 工程设计学报, 2024, 31(5): 592-602.
[3] 田立勇,敖华,于宁,唐瑞. 更换托辊机器人履带式底盘的仿真与优化[J]. 工程设计学报, 2024, 31(5): 603-613.
[4] 李漫漫,杨全合,解开婷,王媛,徐东辉,张兆国. 自走式三七联合收获机液压系统设计与试验研究[J]. 工程设计学报, 2024, 31(5): 670-680.
[5] 许哲,代威,曹宇,李永国,张舜. 欠驱动型ROV改进设计与纵倾优化[J]. 工程设计学报, 2024, 31(4): 483-490.
[6] 余瑞明,马云艳,池伟,沈宇忠. 全金属硬密封双向零泄漏三偏心蝶阀设计与分析[J]. 工程设计学报, 2024, 31(4): 511-520.
[7] 孙宝印,郝永平,张誉瀚,李子洋. 基于数字孪生的热电池保温棉自动缠绕系统研究[J]. 工程设计学报, 2024, 31(4): 538-546.
[8] 张伟涛,赵栋杰,王禄,包新棉,黄保赛. 一种柔性采摘机械臂的运动学分析与仿真[J]. 工程设计学报, 2024, 31(2): 230-237.
[9] 李新革,廖红玉,周敏,陈萌萌,谢良喜. 抹灰机摆动喷涂机构创新设计与分析[J]. 工程设计学报, 2024, 31(2): 248-253.
[10] 智文静,李国材,郑维娟,张晨,刘冬平,才潇逸. 基于人机工程学的民用飞机舱门操作面板设计[J]. 工程设计学报, 2024, 31(1): 107-119.
[11] 杨开科,罗俊鹏,马文静,耿远超,王德恩,袁强. 高带宽压电片变形镜的动力学仿真与优化方法研究[J]. 工程设计学报, 2024, 31(1): 130-136.
[12] 畅博彦,闫圣杰,梁栋,关鑫,韩芳孝. 具有变泊松运动特性的剪叉式折展机构运动学分析[J]. 工程设计学报, 2024, 31(1): 20-30.
[13] 赵万博,陈赛旋,姜官武,李荣,章宇. 新型线驱动式微创手术器械结构设计与运动学分析[J]. 工程设计学报, 2023, 30(6): 657-666.
[14] 田立勇,唐瑞,于宁,陈洪月. 带式输送机更换托辊用皮带举升机构设计与应用[J]. 工程设计学报, 2023, 30(6): 667-677.
[15] 魏森森,杜常清,邹斌,徐玉兵. 电控正流量挖掘机分阶段控制技术研究[J]. 工程设计学报, 2023, 30(6): 717-727.