Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (6): 657-666    DOI: 10.3785/j.issn.1006-754X.2023.03.131
创新设计     
新型线驱动式微创手术器械结构设计与运动学分析
赵万博1(),陈赛旋1(),姜官武2,李荣3,章宇1
1.上海工程技术大学 机械与汽车工程学院,上海 201620
2.西南科技大学 信息工程学院,四川 绵阳 621002
3.苏州融萃特种机器人有限公司,江苏 苏州 215011
Structural design and kinematics analysis of new cable-driven minimally invasive surgical instrument
Wanbo ZHAO1(),Saixuan CHEN1(),Guanwu JIANG2,Rong LI3,Yu ZHANG1
1.School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
2.School of Information Engineering, Southwest University of Science and Technology, Mianyang 621002, China
3.Suzhou Rongcui Special Robot Co. , Ltd. , Suzhou 215011, China
 全文: PDF(4318 KB)   HTML
摘要:

在微创手术机器人系统中,传统线驱动式手术器械的偏摆关节与夹持器的转动关节之间存在运动耦合,这会对手术器械的运动精度产生不良影响。为此,提出了一种新型的四自由度线驱动式手术器械,其偏摆关节采用行星齿轮式结构,以实现偏摆关节与夹持器之间的运动解耦。首先,对传统线驱动式手术器械的关节运动耦合问题进行了分析。然后,设计了行星齿轮式转动的偏摆关节,并通过几何理论分析证明了其具有极低的关节耦合性,且钢丝绳在运动过程中的受迫形变量极小;同时,通过标准D-H参数法建立了新型手术器械的正运动学模型,并利用解析法求得了其逆运动学的封闭解。最后,分别使用MATLAB软件的Robotics Toolbox和Simulink环境中搭建的仿真模型对手术器械的正、逆运动学模型的准确性进行了验证,并采用蒙特卡罗法分析了其工作空间。仿真结果表明,所提出的手术器械的结构设计可靠,关节之间的运动耦合性较低,其工作空间能够满足微创外科手术的要求。研究结果可为柔性线驱动式手术器械的结构设计与运动学分析提供参考。

关键词: 微创手术机器人线驱动手术器械运动学运动解耦Simulink仿真    
Abstract:

In the minimally invasive surgical robot system, there is a kinematic coupling between the yaw joint and the rotating joint of the gripper for the traditional cable-driven surgical instrument, which has an adverse effect on the kinematic accuracy of the surgical instrument. For this reason, a new four-degree-of-freedom cable-driven surgical instrument was proposed. The yaw joint adopted a planetary gear structure, which could achieve kinematic decoupling between the yaw joint and the gripper. Firstly, the kinematic coupling problem of joints in the traditional cable-driven surgical instrument was analyzed. Then, a jaw joint of planetary gear rotation was designed, and the geometric analysis proved that it had very low joint coupling and the forced deformation of the steel cable was very small during the motion. At the same time, the forward kinematics model of the new surgical instrument was constructed by using the standard D-H parameter method, and the closed-form solution of its inverse kinematics was obtained by the analytical method. Finally, the accuracy of the forward and inverse kinematics models was verified by using the Robotics Toolbox and the simulation model built in the Simulink environment of MATLAB software, and the workspace of the surgical instrument was analyzed by using the Monte Carlo method. The simulation results showed that the structure design of the proposed surgical instrument was reliable, the kinematic coupling between the joints was low, and its workspace could meet the requirements of minimally invasive surgery. The research results can provide reference for the structural design and kinematics analysis of flexible cable-driven surgical instruments.

Key words: minimally invasive surgical robot    cable-driven    surgical instrument    kinematics    kinematic decoupling    Simulink simulation
收稿日期: 2023-03-14 出版日期: 2024-01-02
CLC:  TP 241  
基金资助: 国家自然科学基金青年基金资助项目(52005316);江苏省重点研发计划项目(BE2020082-3);特殊环境机器人技术四川省重点实验室开放基金资助项目(22kftk04)
通讯作者: 陈赛旋     E-mail: 784085302@qq.com;chensx499796981@126.com
作者简介: 赵万博(1995—),男,山西汾阳人,硕士生,从事线驱动式微创外科手术器械研究,E-mail: 784085302@qq.com,https://orcid.org/0009-0002-0833-1384
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵万博
陈赛旋
姜官武
李荣
章宇

引用本文:

赵万博,陈赛旋,姜官武,李荣,章宇. 新型线驱动式微创手术器械结构设计与运动学分析[J]. 工程设计学报, 2023, 30(6): 657-666.

Wanbo ZHAO,Saixuan CHEN,Guanwu JIANG,Rong LI,Yu ZHANG. Structural design and kinematics analysis of new cable-driven minimally invasive surgical instrument[J]. Chinese Journal of Engineering Design, 2023, 30(6): 657-666.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.03.131        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I6/657

图1  新型线驱动式手术器械整体结构
图2  新型线驱动式手术器械的自由度分布
图3  夹持器驱动绳排布示意
图4  偏摆关节驱动绳排布示意
图5  连杆驱动绳排布示意
图6  驱动装置结构示意
图7  驱动绞轴结构示意
图8  传统线驱动式手术器械偏摆关节运动示意
图9  新型线驱动式手术器械偏摆关节运动示意
图10  新型线驱动式手术器械的D-H坐标系
连杆iαi/°ai/mmdi/mmθi/°
1900d1θ1
20a20θ2+90
390a30θ3
490a40θ4
表1  新型线驱动式手术器械的D-H参数
图11  新型线驱动式手术器械传动原理
图12  新型线驱动式手术器械的位姿仿真结果
图13  新型线驱动式手术器械正、逆运动学的Simulink仿真模型
图14  新型线驱动式手术器械逆运动学仿真验证结果
图15  新型线驱动式手术器械的工作空间
21 CHEN S X, LUO M Z, ABDELAZIZ O, et al. A general analytical algorithm for collaborative robot (cobot) with 6 degree of freedom (DOF)[C]//2017 International Conference on Applied System Innovation (ICASI), Sapporo, May 13-17, 2017.
22 CORKE P. Robotics, vision and control fundamental algorithms in MATLAB[M]. 2nd ed. Berlin Heidelberg: Springer, 2017: 210-213.
23 LI Y M, XU Q S. Kinematic analysis of a 3-PRS parallel manipulator[J]. Robotics and Computer-Integrated Manufacturing, 2007, 23(4): 395-408.
1 PAYNE S R, FORD T F, WICKHAM J E A. Endoscopic management of upper urinary tract stones[J]. British Journal of Surgery, 1985, 72(10): 822-824.
2 闫志远,梁云雷,杜志江.腹腔镜手术机器人技术发展综述[J].机器人技术与应用,2020(2):24-29. doi:10.3969/j.issn.1004-6437.2020.02.019
YAN Z Y, LIANG Y L, DU Z J. A review on the development of laparoscopic surgery robot technology[J]. Robot Technique and Application, 2020(2): 24-29.
doi: 10.3969/j.issn.1004-6437.2020.02.019
3 HONG M B, JO Y H. Design of a novel 4-DOF wrist-type surgical instrument with enhanced rigidity and dexterity[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(2): 500-511.
24 蔡自兴.机器人学[M].2版.北京:清华大学出版社,2009:35-36.
CAI Z X. Robotics[M]. 2nd ed. Beijing: Tsinghua University Press, 2009: 35-36.
4 CHOI H, KWAK H S, LIM Y A, et al. Surgical robot for single-incision laparoscopic surgery[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(9): 2458-2466.
5 KIM H, CHOI H, JANG J, et al. A novel compact single incision surgical robot with conical remote center-of-motion mechanism and rod elbow joint[C]//EUS Annual Meeting, Munich, May 13-15, 2013.
6 PICCIGALLO M, SCARFOGLIERO U, QUAGLIA C, et al. Design of a novel bimanual robotic system for single-port laparoscopy[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(6): 871-878.
7 SHANG J Z, LEIBRANDT K, GIATAGANAS P, et al. A single-port robotic system for transanal microsurgery: design and validation[J]. IEEE Robotics and Automation Letters, 2017, 2(3): 1510-1517.
8 ROSEN J, SEKHAR L N, GLOZMAN D, et al. Roboscope: a flexible and bendable surgical robot for single portal minimally invasive surgery[C]//2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, May 29-Jun. 3, 2017.
9 HE C, WANG S X, SANG H Q, et al. Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2013, 10(3): 314-324.
10 李坤.微创手术机器人力检测关键技术研究[D].哈尔滨:哈尔滨工业大学,2016:18-20. doi:10.18869/acadpub.jafm.68.236.25086
LI K. Key technologies of force sensing for robotic minimally invasive surgery[D]. Harbin: Harbin Institute of Technology, 2016: 18-20.
doi: 10.18869/acadpub.jafm.68.236.25086
11 HONG W Z, XIE L, LIU J H, et al. Development of a novel continuum robotic system for maxillary sinus surgery[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(3): 1226-1237.
12 ZHAO J R, FENG B, ZHENG M H, et al. Surgical robots for SPL and NOTES: a review[J]. Minimally Invasive Therapy & Allied Technologies, 2015, 24(1): 8-17.
13 ZHAO J R, ZHENG X D, ZHENG M H, et al. An endoscopic continuum testbed for finalizing system characteristics of a surgical robot for NOTES procedures[C]//2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong, NSW, Jul. 9-12, 2013.
14 ZHAO B L, NELSON C A. Decoupled cable-driven grasper design based on planetary gear theory[J]. Journal of Medical Devices, 2013, 7(2): 020918.
15 XUE R F, REN B Y, YAN Z Y, et al. A cable-pulley system modeling based position compensation control for a laparoscope surgical robot[J]. Mechanism and Machine Theory, 2017, 118: 283-299.
16 CAO Z C, XIAO Q, HUANG R, et al. Robust neuro-optimal control of underactuated snake robots with experience replay[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 208-217.
17 MA X, SONG C Z, CHIU P W, et al. Autonomous flexible endoscope for minimally invasive surgery with enhanced safety[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 2607-2613.
18 JIN X Z, FENG M, HAN Z W, et al. Development of a mechanical decoupling surgical scissors for robot-assisted minimally invasive surgery[J]. Robotica, 2022, 40(2): 316-328.
19 闫昱晟,于凌涛,袁华营,等.一种绳驱动式手术器械运动解耦设计与分析[J].哈尔滨工程大学学报,2020,41(3):455-462.
YAN Y S, YU L T, YUAN H Y, et al. Kinematic decoupling design and analysis of a cable-driven surgical instrument[J]. Journal of Harbin Engineering University, 2020, 41(3): 455-462.
[1] 杨展,李其朋,唐威,秦可成,陈岁繁,王铠迪,刘阳,邹俊. 小型陆空变形两栖机器人的设计与分析[J]. 工程设计学报, 2023, 30(3): 325-333.
[2] 徐诗洋,吴炳晖,纪冬梅,戴新宇. 电力隧道自动巡检机器人设计与运动仿真[J]. 工程设计学报, 2023, 30(1): 32-38.
[3] 张鹏程,牛建业,刘承磊,宋井科,王立鹏,张建军. 牵引式下肢康复机器人机构参数优化及轨迹规划[J]. 工程设计学报, 2022, 29(6): 695-704.
[4] 张春燕,丁兵,何志强,杨杰. 转盘式多足仿生机器人的运动学分析及优化[J]. 工程设计学报, 2022, 29(3): 327-338.
[5] 芮宏斌,李路路,曹伟,王天赐,段凯文,吴莹辉. --腿复合仿生机器人步态规划及越障性能分析[J]. 工程设计学报, 2022, 29(2): 133-142.
[6] 陈致, 张春燕, 蒋新星, 朱锦翊, 卢晨晖. 一种可重构的空间开/闭链6R移动并联机构的设计与分析[J]. 工程设计学报, 2021, 28(4): 511-520.
[7] 傅旻, 李晨曦, 郑兆启. 半自动拧取式菠萝采摘收集机的设计与分析[J]. 工程设计学报, 2020, 27(4): 487-497.
[8] 魏雅君, 邱国梁, 丁广和, 杨亮, 刘桁. 一种重载码垛机器人结构优化设计方法[J]. 工程设计学报, 2020, 27(3): 332-339.
[9] 张俊宝, 侯红娟, 崔国华, 刘健. 一类刚柔协作混联机器人机构的绳索数量和位置分布研究[J]. 工程设计学报, 2020, 27(3): 364-372.
[10] 刘卓, 连宾宾, 李祺. 基于有限和瞬时旋量理论的Exechon并联机器人运动学分析[J]. 工程设计学报, 2020, 27(3): 357-363.
[11] 贺晓莹, 高兴宇, 王海舰, 彭艳华, 李煜. 七自由度双臂协作机器人操作稳定性分析[J]. 工程设计学报, 2019, 26(6): 706-713.
[12] 李静, 朱凌云, 苟向锋. 基于人机闭链的下肢康复外骨骼机构运动学分析[J]. 工程设计学报, 2019, 26(1): 65-72,109.
[13] 贾慧波, 李程宇, 吴晓君, 刘小青, 李彦磊. 全向自动导引车导向机构设计及其运动控制研究[J]. 工程设计学报, 2018, 25(5): 546-552.
[14] 高征, 王璐, 郭钰莹. 索杆式风电叶片检测装置的运动学分析[J]. 工程设计学报, 2018, 25(2): 188-193.
[15] 阴贺生, 张秋菊, 宁萌. 全向移动机器人驱动轮同步转向机构设计[J]. 工程设计学报, 2018, 25(2): 230-236.