【特约专栏】“2024’工程机械行业科技节”成果展示——创新技术及其应用 |
|
|
|
|
基于数据驱动的液压马达预测性维护研究 |
刘强1,4( ),朱建新2,3,崔瑜源2 |
1.长沙职业技术学院 智能制造工程学院,湖南 长沙 410100 2.中南大学 高性能复杂制造国家重点实验室,湖南 长沙 410100 3.长沙市特种工程装备工业技术研究院有限公司,湖南 长沙 410100 4.山河智能装备股份有限公司 国家级企业技术中心,湖南 长沙 410100 |
|
Data-driven predictive maintenance research on hydraulic motor |
Qiang LIU1,4( ),Jianxin ZHU2,3,Yuyuan CUI2 |
1.School of Intelligent Manufacturing Engineering, Changsha Vocational and Technical College, Changsha 410100, China 2.State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410100, China 3.Changsha Special Engineering Equipment Industrial Technology Research Institute Co. , Ltd. , Changsha 410100, China 4.National Enterprise Technology Center, Sunward Intelligent Equipment Co. , Ltd. , Changsha 410100, China |
1 |
李向前. 复杂装备故障预测与健康管理关键技术研究[D]. 北京: 北京理工大学, 2014: 2-3. LI X Q. Research on key technologies of fault prediction and health management of complex equipment[D]. Beijing: Beijing Institute of Technology, 2014: 2-3.
|
2 |
郭宇. 基于故障预测的设备预防性维护策略研究及应用[D]. 重庆: 重庆大学, 2017. GUO Y. Research and application of equipment preventive maintenance policies based on fault prediction[D]. Chongqing: Chongqing University, 2017.
|
3 |
RAY A, TANGIRALA S. Stochastic modeling of fatigue crack dynamics for on-line failure prognostics[J]. IEEE Transactions on Control Systems Technology, 1996, 4(4): 443-451.
|
4 |
LI Y, BILLINGTON S, ZHANG C, et al. Adaptive prognostics for rolling element bearing condition[J]. Mechanical Systems and Signal Processing, 1999, 13(1): 103-113.
|
5 |
GLODEŽ S, ŠRAML M, KRAMBERGER J. A computational model for determination of service life of gears[J]. International Journal of Fatigue, 2002, 24(10): 1013-1020.
|
6 |
SIDAR M, DOOLIN B. On the feasibility of real-time prediction of aircraft carrier motion at sea[J]. IEEE Transactions on Automatic Control, 1983, 28(3): 350-356.
|
7 |
HUANG R Q, XI L F, LI X L, et al. Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods[J]. Mechanical Systems and Signal Processing, 2007, 21(1): 193-207.
|
8 |
COPPE A, PAIS M J, HAFTKA R T, et al. Using a simple crack growth model in predicting remaining useful life[J]. Journal of Aircraft, 2012, 49(6): 1965-1973.
|
9 |
STANDER C J, HEYNS P S, SCHOOMBIE W. Using vibration monitoring for local fault detection on gears operating under fluctuating load conditions[J]. Mechanical Systems and Signal Processing, 2002, 16(6): 1005-1024.
|
10 |
DONG M, HE D. A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology[J]. Mechanical Systems and Signal Processing, 2007, 21(5): 2248-2266.
|
11 |
GEBRAEEL N Z, LAWLEY M A. A neural network degradation model for computing and updating residual life distributions[J]. IEEE Transactions on Automation Science and Engineering, 2008, 5(1): 154-163.
|
12 |
MIRIKITANI D T, NIKOLAEV N. Recursive Bayesian recurrent neural networks for time-series modeling[J]. IEEE Transactions on Neural Networks, 2010, 21(2): 262-274.
|
13 |
ZHOU F N, HU P, YANG X H. RUL prognostics method based on real time updating of LSTM parameters[C]//2018 Chinese Control and Decision Conference, Shenyang, China, Jun. 09-11, 2018: 3966-3971.
|
14 |
ZHANG W T, YANG D, WANG H C. Data-driven methods for predictive maintenance of industrial equipment: A survey[J]. IEEE Systems Journal, 2019, 13(3): 2213-2227.
|
15 |
陈远航. 滚动轴承剩余寿命预测算法研究及监测软件开发[D]. 哈尔滨: 哈尔滨工业大学, 2020: 50-52. CHEN Y H. Study on algorithm for rolling bearing remaining useful life prediction and development of monitor software[D]. Harbin: Harbin Institute of Technology, 2020: 50-52.
|
16 |
张国辉. 基于深度置信网络的时间序列预测方法及其应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 46-51. doi:10.18178/ijiee.2017.7.4.674 ZHANG G H. Research on time series prediction and its application based on deep belief network[D]. Harbin: Harbin Institute of Technology, 2017: 46-51.
doi: 10.18178/ijiee.2017.7.4.674
|
17 |
PATRICK N, RAFAEL G, KAMAL M. Pronostia: An experimental platform for bearings accelerated life test[C]//IEEE International Conference on Prognostics and Health Management, Denver, Colorado, United States, Jun. 18-21, 2012.
|
18 |
魏晓良, 潮群, 陶建峰, 等. 基于LSTM和CNN的高速柱塞泵故障诊断[J]. 航空学报, 2021, 42(3): 423876. doi:10.7527/S1000-6893.2020.23876 WEI X L, CHAO Q, TAO J F, et al. Cavitation fault diagnosis method for high-speed plunger pumps based on LSTM and CNN[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 423876.
doi: 10.7527/S1000-6893.2020.23876
|
19 |
侍晓冬. 基于深度学习DSAE与LSTM的液压泵剩余使用寿命预测[D]. 秦皇岛: 燕山大学, 2021: 60-62. SHI X D. Remaining useful life prediction of hydraulic pump based on deep learning DSAE and LSTM[D]. Qinhuangdao: Yanshan University, 2021: 60-62.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|