Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (6): 717-727    DOI: 10.3785/j.issn.1006-754X.2024.03.167
可靠性与保质设计     
电控正流量挖掘机分阶段控制技术研究
魏森森1(),杜常清1,2(),邹斌2,徐玉兵2
1.武汉理工大学 汽车工程学院,湖北 武汉 430070
2.武汉理工大学 现代汽车零部件技术湖北省重点实验室,湖北 武汉 430070
Research on phased control technology of electrically controlled positive flow excavator
Sensen WEI1(),Changqing DU1,2(),Bin ZOU2,Yubing XU2
1.School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
2.Hubei Key Laboratory of Modern Automotive Parts Technology, Wuhan University of Technology, Wuhan 430070, China
 全文: PDF(3874 KB)   HTML
摘要:

针对负流量挖掘机执行机构响应速度慢以及分工况控制能量利用率低的问题,提出了一种电控正流量挖掘机的分阶段控制策略。将挖掘机的一个作业循环分为4个阶段:挖掘阶段、满载返回阶段、卸载阶段和空载返回阶段。基于AMESim和Simulink软件搭建了电控正流量挖掘机联合仿真模型,其液压系统采用分层控制方法。其中,上层控制器根据电控手柄信号计算得到挖掘机执行机构的流量需求,并通过判断执行机构的状态来判断挖掘机的作业阶段,从而确定发动机的基速。下层控制器接收来自上层控制器的发动机基速,并采集挖掘机主供油泵的压力信号,利用模糊控制算法对发动机的转速进行修正,以得到发动机的期望转速;同时采用滑模PID(proportional-integral-derivative,比例-积分-微分)控制来稳定发动机的工作转速。最后,通过联合仿真和实车实验来验证所提出的控制策略的有效性。仿真结果表明:在正流量挖掘机的一个作业循环内,发动机的转速能稳定在期望转速附近,其油耗为192~220 g/(kW·h)。实验结果表明:相较于分工况控制,分阶段控制在挖掘机一个作业循环内的各个阶段均能保证发动机在经济油耗区工作。所提出的方法为电控正流量挖掘机的控制研究提供了新方向和参考。

关键词: 电控正流量挖掘机联合仿真分层控制模糊控制实车验证    
Abstract:

Aiming at the problems of slow response speed of negative flow excavator actuator and low energy utilization rate of control by different working conditions, a phased control strategy for electrically controlled positive flow excavator was proposed. The working cycle of excavator was divided into four stages: excavation stage, full load return stage, unloading stage and no-load return stage. The co-simulation model of electrically controlled positive flow excavator was built based on AMESim and Simulink software. Its hydraulic system adopted hierarchical control method. Among them, the upper-layer controller calculated the flow demand of the excavator actuator according to the electric handle signal, and judged the working stage of the excavator by judging the state of the actuator, so that the base speed of engine was determined. The lower-layer controller received the base speed of engine from the upper-layer controller, and collected the main oil feed pump pressure signal of the excavator. The fuzzy control algorithm was used to correct the engine speed, and the expected engine speed was obtained. At the same time, the sliding mode PID (proportional-integral-derivative) control was used to stabilize the engine speed. Finally, the effectiveness of the proposed control strategy was verified through co-simulation and real vehicle experiments. The simulation results showed that in one working cycle of the positive flow excavator, the engine speed could be stable near the expected speed, and its fuel consumption was 192-220 g/(kW·h). The experiment results showed that compared with the control by different working conditions, the phased control in each stage of a working cycle of the excavator could ensure that the engine worked in the economic fuel consumption zone. The proposed method provides a new direction and reference for the control research of electronically controlled positive flow excavators.

Key words: electrically controlled positive flow    excavator    co-simulation    hierarchical control    fuzzy control    real vehicle verification
收稿日期: 2023-05-16 出版日期: 2024-01-02
CLC:  TU 621  
基金资助: 国家重点研发计划项目(2020YFB1709900)
通讯作者: 杜常清     E-mail: 2294345388@qq.com;cq_du@whut.edu.cn
作者简介: 魏森森(1997—),男,河南周口人,硕士生,从事液压传动与控制研究,E-mail: 2294345388@qq.com,https://orcid.org/0009-0000-0486-631X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
魏森森
杜常清
邹斌
徐玉兵

引用本文:

魏森森,杜常清,邹斌,徐玉兵. 电控正流量挖掘机分阶段控制技术研究[J]. 工程设计学报, 2023, 30(6): 717-727.

Sensen WEI,Changqing DU,Bin ZOU,Yubing XU. Research on phased control technology of electrically controlled positive flow excavator[J]. Chinese Journal of Engineering Design, 2023, 30(6): 717-727.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.167        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I6/717

性能

负载敏感

控制

负流量

控制

正流量

控制

节能一般
响应速度一般
系统稳定性
操纵性
耐久性一般
复合动作适应性
成本一般一般
表1  不同流量控制方式的性能对比
图1  电控正流量挖掘机控制原理
图2  挖掘机不同作业阶段的功率需求
图3  柴油机的万有特性曲线
图4  三位六通换向阀原理
图5  发动机-双泵模型
图6  电控正流量挖掘机液压系统模型
液压油缸活塞直径活塞杆直径行程
动臂油缸11075610
斗杆油缸8050770
铲斗油缸9060610
表2  挖掘机各执行机构参数设置 (mm)
图7  电控正流量挖掘机分层控制流程
图8  基于卡尔曼滤波器的PID控制原理
图9  基于卡尔曼滤波器的PID控制模型
图10  发动机工作状态判断逻辑
图11  挖掘机执行机构状态判断逻辑
pe
NBNMNSZOPSPMPB
NBPMPSZONSNBNBNB
NMPMPMZONSNMNBNB
NSPBPBPMZONSNMNM
ZOPMPSPSZONSNSNM
PSPBPBPMZONSNMNM
PMPMPMZONSNMNBNB
PBPMPSZONSNBNBNB
表3  发动机转速的模糊控制规则
图12  发动机滑模控制模型
动作规则
动臂提升泵1主供,泵2副供
动臂下降泵1单独供
斗杆伸出/回收泵2主供,泵1副供
铲斗挖掘/卸载泵1和泵2联合供油
表4  挖掘机变量泵的供油规则
图13  主、副三位六通换向阀流量分配控制策略
图14  挖掘机联合仿真的Simulink接口
图15  挖掘机联合仿真的AMESim接口
图16  铲斗动作时发动机转速的仿真曲线
图17  铲斗油缸压力仿真曲线
图18  动臂、斗杆动作时发动机转速的仿真曲线
图19  斗杆油缸压力仿真曲线
图20  动臂油缸压力仿真曲线
图21  不同控制方式下发动机的油耗对比
图22  挖掘机实验机型
图23  分阶段控制下发动机转速的实测曲线
图24  分阶段控制下主供油泵出口压力实测曲线
图25  分阶段控制下主供油泵出口流量实测曲线
图26  分阶段控制下发动机工作点分布
图27  分工况控制下发动机工作点分布
1 刘学成.纯电驱液压挖掘机储能系统及控制策略研究[D].太原:太原理工大学,2019:18-20.
LIU X C. Research on energy storage system and control strategy of pure electric drive hydraulic excavator[D]. Taiyuan: Taiyuan University of Technology, 2019: 18-20.
2 刘志东,李莺莺,王青云,等.挖掘机液压系统的效率分析与试验研究[J].机电工程,2021,38(12):1617-1621. doi:10.3969/j.issn.1001-4551.2021.12.016
LIU Z D, LI Y Y, WANG Q Y, et al. Efficiency analysis and testing of hydraulic system of excavator[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(12): 1617-1621.
doi: 10.3969/j.issn.1001-4551.2021.12.016
3 刘建民.液压挖掘机关键技术综述[J].建设机械技术与管理,2001(12):26-28. doi:10.3969/j.issn.1004-0005.2001.12.008
LIU J M. Review on key technologies of hydraulic excavator[J]. Construction Machinery Technology and Management, 2001(12): 26-28.
doi: 10.3969/j.issn.1004-0005.2001.12.008
4 樊一宁,杜常清,邹斌,等.电控正流量挖掘机分工况功率匹配研究[J].机床与液压,2023,51(19):17-24. doi:10.3969/j.issn.1001-3881.2023.19.003
FAN Y N, DU C Q, ZOU B, et al. Research on power matching of electronically controlled positive flow excavator under different working conditions[J]. Machine Tool & Hydraulics, 2023, 51(19): 17-24.
doi: 10.3969/j.issn.1001-3881.2023.19.003
5 赵旭.大型液压挖掘机工作装置结构性能分析与轻量化研究[D].徐州:中国矿业大学,2019:25-28.
ZHAO X. Structural performance analysis and lightweight research of large hydraulic excavator working device[D]. Xuzhou: China University of Mining and Technology, 2019: 25-28.
6 汤振周.挖掘机电控柴油机与电控变量泵的合理匹配研究[J].长春工程学院学报(自然科学版),2017,18(2):47-50.
TANG Z Z. The research on reasonable matching between electronic control diesel engine and electronically controlled variable pump for excavator[J]. Journal of Changchun Institute of Technology (Natural Sciences Edition), 2017, 18(2): 47-50.
7 高峰.液压挖掘机中的电控系统[J].工程机械文摘,2007(4):13-16.
GAO F. Electronic control system in hydraulic excavator [J]. Construction Machinery Abstract, 2007(4): 13-16.
8 刘顺安,王辉,游善兰.全液压挖掘机分工况转速感应控制[J].建筑机械,2005(9):86-88. doi:10.3969/j.issn.1001-554X.2005.09.033
LIU S A, WANG H, YOU S L. Induction control of revolution speed according to work condition for hydraulic excavator[J]. Construction Machinery, 2005(9): 86-88.
doi: 10.3969/j.issn.1001-554X.2005.09.033
9 邓宇,何清华,张云龙,等.液压挖掘机的功率匹配控制方法[J].科技导报,2014,32(21):37-42. doi:10.3981/j.issn.1000-7857.2014.21.005
DENG Y, HE Q H, ZHANG Y L, et al. A method on power-matching control of hydraulic excavator[J]. Science & Technology Review, 2014, 32(21): 37-42.
doi: 10.3981/j.issn.1000-7857.2014.21.005
10 史余鹏.液压挖掘机工况识别方法及分阶段能量管理策略研究[D].长沙:中南大学,2022:10-13.
SHI Y P. Study on working stage identification and staged energy-saving control of hydraulic excavator[D]. Changsha: Central South University, 2022: 10-13.
11 严希清.分工况节能控制在单斗液压挖掘机系统中的应用[J].海峡科技与产业,2017(2):88-89.
YAN X Q. Application of energy-saving control based on different working conditions in single-bucket hydraulic excavator system[J]. Technology and Industry Across the Straits, 2017(2): 88-89.
12 高宇,冯培恩,彭贝,等.液压挖掘机分阶段功率匹配控制技术[J].哈尔滨工程大学学报,2017,38(9):1461-1469. doi:10.11990/jheu.201605053
GAO Y, FENG P E, PENG B, et al. Stage-based power matching control of hydraulic excavator[J]. Journal of Harbin Engineering University, 2017, 38(9): 1461-1469.
doi: 10.11990/jheu.201605053
13 李嫒敏.液压挖掘机分工况功率匹配研究[D].长春:吉林大学,2020:40-45.
LI Y M. Hydraulic excavator working condition of power matching research[D]. Changchun: Jilin University, 2020: 40-45.
14 韩绍斌.全电控正流量挖掘机节能技术研究[D].长春:吉林大学,2017:35-39.
HAN S B. Research on energy saving technology of fully electronically controlled positive flow excavator[D]. Changchun: Jilin University, 2017: 35-39.
15 高达.矿用机械设备正流量液压系统电控算法应用[J].工程建设,2022,5(3):95-97.
GAO D. Application of electric control algorithm in positive flow hydraulic system of mining machinery and equipment[J]. Engineering Construction, 2022, 5(3): 95-97.
16 赵文华.挖掘机电控系统的研究与实现[D].济南:山东大学,2010:28-33.
ZHAO W H. Research and implementation of electric control system for excavator[D]. Jinan: Shandong University, 2010: 28-33.
17 魏彬,刘会娟.小型液压挖掘机电控系统现状与发展[J].建筑机械化,2012,33(9):39-41. doi:10.3969/j.issn.1001-1366.2012.09.009
WEI B, LIU H J. State and development of electronic control system on small hydraulic excavator[J]. Construction Mechanization, 2012, 33(9): 39-41.
doi: 10.3969/j.issn.1001-1366.2012.09.009
18 彭贝.液压挖掘机分阶段功率匹配技术研究[D].杭州:浙江大学,2016:43-50.
PENG B. Research on stage power matching technology of hydraulic excavator[D]. Hangzhou: Zhejiang University, 2016: 43-50.
19 胡滨,刘喜锋,宋琳莹,等.工程机械发动机功率分阶段匹配控制研究[J].建筑机械化,2016,37(2):30-33. doi:10.3969/j.issn.1001-1366.2016.02.007
HU B, LIU X F, SONG L Y, et al. Research on the phased matching control of engine power in construction machinery[J]. Construction Mechanization, 2016, 37(2): 30-33.
doi: 10.3969/j.issn.1001-1366.2016.02.007
20 毋本鑫,施进发,杨杰,等.智能牵引机动力系统功率匹配与自适应控制[J].液压与气动,2022,46(3):70-79. doi:10.11832/j.issn.1000-4858.2022.03.009
WU B X, SHI J F, YANG J, et al. Power matching and adaptive control of intelligent tractor power system[J]. Chinese Hydraulics & Pneumatics, 2022, 46(3): 70-79.
doi: 10.11832/j.issn.1000-4858.2022.03.009
21 孟俊晓,陈俊翔,卢子艺,等.正流量液压挖掘机平地工况下压力抖动研究[J].重庆理工大学学报(自然科学),2022,36(10):239-248.
MENG J X, CHEN J X, LU Z Y, et al. Study on pressure jitter of a positive flow hydraulic excavator under flat operation[J]. Journal of Chongqing University of Technology (Natural Science), 2022, 36(10): 239-248.
22 赵帆.正流量液压挖掘机全局匹配控制研究[D].秦皇岛:燕山大学,2020:54-59.
ZHAO F. Research on global matching control of positive flow hydraulic excavator[D]. Qinhuangdao: Yanshan University, 2020: 54-59.
23 李学军,张生.基于卡尔曼+PID的电子节气门控制方法研究[J].长春大学学报,2018,28(8):1-5.
LI X J, ZHANG S. Research on control method of electronic throttle based on Kalman+PID[J]. Journal of Changchun University, 2018, 28(8): 1-5.
24 李献,骆志伟,于晋臣,等.MATLAB/Simulink系统仿真[M].北京:清华大学出版社,2017:128-289.
LI X, LUO Z W, YU J C, et al. MATLAB/Simulink system simulation[M]. Beijing: Tsinghua University Press, 2017: 128-289.
[1] 芮宏斌,李路路,王天赐,段凯文. 两栖仿海龟机器人动力学建模与运动控制研究[J]. 工程设计学报, 2023, 30(1): 73-81.
[2] 张卉,朱永飞,刘雪飞,徐向荣. 基于模糊迭代Q-学习的冶金工业机器人轨迹跟踪控制研究[J]. 工程设计学报, 2022, 29(5): 564-571.
[3] 辛传龙, 郑荣, 杨博. AUV水下对接系统设计与接驳控制方案研究[J]. 工程设计学报, 2021, 28(5): 633-645.
[4] 丁述勇, 张征, 丁文洁, 林勇. 多巷道式立体车库优化设计与车辆存取策略研究[J]. 工程设计学报, 2021, 28(4): 443-449.
[5] 王颜, 刘净瑜, 李光, 张加波, 刘星, 周欣欣. 基于IGPS和麦克纳姆轮的AGV导航控制系统设计[J]. 工程设计学报, 2020, 27(5): 662-670.
[6] 王雅坤, 任家骏, 李爱峰, 孟浩南. 矿用挖掘机驾驶室操作界面的布局优化设计[J]. 工程设计学报, 2020, 27(4): 469-477.
[7] 袁凯, 刘延俊, 孙景余, 罗星. 基于模糊RBF神经网络的水下机械臂控制研究[J]. 工程设计学报, 2019, 26(6): 675-682.
[8] 秦永峰, 龚国芳, 王飞, 孙辰晨. 基于RBF神经网络的液黏调速离合器活塞位移控制器设计[J]. 工程设计学报, 2019, 26(5): 603-610.
[9] 段志强, 郭彦青, 王龙. 大惯量专用转台高精度控制研究[J]. 工程设计学报, 2019, 26(2): 162-169.
[10] 胡俊峰, 李永明, 郑昌虎. 基于模糊控制的微操作平台位置精度补偿方法[J]. 工程设计学报, 2018, 25(2): 123-130.
[11] 谢苗, 刘治翔, 毛君. 立体停车位液压系统控制策略及节能控制技术研究[J]. 工程设计学报, 2017, 24(1): 115-120.
[12] 李富贵, 龙伟, 罗亮, 詹从来. 预测模糊控制在液化天然气调峰系统的应用[J]. 工程设计学报, 2016, 23(1): 95-100.
[13] 刘智光,于 菲,张 靓,李铁军,安占法. 基于模糊自适应阻抗控制的机器人接触力跟踪[J]. 工程设计学报, 2015, 22(6): 569-574.
[14] 吕宽州,陈素霞,黄全振. 柔性机械臂的轨迹跟踪与振动模糊控制[J]. 工程设计学报, 2015, 22(1): 78-83.
[15] 陈永亮,韩瑶,刘谱,黄金,包能胜,顾佩华*. 五辊式无溶剂涂布系统交叉耦合建模与设计方法[J]. 工程设计学报, 2014, 21(1): 38-42.