Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (1): 20-30    DOI: 10.3785/j.issn.1006-754X.2024.03.306
机器人与机构设计     
具有变泊松运动特性的剪叉式折展机构运动学分析
畅博彦1,2(),闫圣杰1,梁栋1,2,关鑫1,韩芳孝1
1.天津工业大学 机械工程学院,天津 300387
2.天津市现代机电装备技术重点实验室,天津 300387
Kinematics analysis of scissor deployable mechanism with variable Poisson motion characteristics
Boyan CHANG1,2(),Shengjie YAN1,Dong LIANG1,2,Xin GUAN1,Fangxiao HAN1
1.School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
2.Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387, China
 全文: PDF(7800 KB)   HTML
摘要:

为提高折展机构的折展率和支撑性能,提出了一种具有变泊松运动特性的剪叉式折展机构并对其进行运动学分析。首先,提出了一种单闭环厚板支撑单元并将其应用于三明治结构,利用ANSYS Workbench软件分析不同形状夹芯层对三明治结构支撑刚度的影响,发现采用厚板支撑单元的三明治结构具有更好的支撑效果和更小的质量,且可通过改变结构设计参数来实现正负泊松比的切换。然后,根据泊松比的定义,设计了一种具有变泊松运动特性的正n边形剪叉式折展机构;基于螺旋理论,通过绘制闭环折展机构的旋量约束拓扑图分析得到其自由度为1,将折展机构分为3种模块并阐述了模块化纵向扩展的原理和过程。最后,建立了m层正n边形剪叉式折展机构的运动学模型并搭建了正四边形剪叉式折展支撑结构实物样机,进一步验证了机构的变泊松运动特性,这可为后续的研究提供理论基础。

关键词: 三明治结构剪叉式折展机构螺旋理论运动学分析    
Abstract:

In order to improve the folding rate and support performance of deployable mechanisms, a scissor deployable mechanism with variable Poisson motion characteristics is proposed and its kinematics analysis is conducted. Firstly, a thick panel support unit with single-closed-loop was proposed and applied to sandwich structures. Through analyzing the influence of different shape sandwich layers on the support stiffness of sandwich structure by using ANSYS Workbench software, it was found that the sandwich structure with thick plate support unit had better support effect and smaller mass, and the positive and negative Poisson' ratio could be switched by changing the structural design parameters. Secondly, according to the definition of Poisson' ratio, a regular n-sided scissor deployable mechanism with variable Poisson motion characteristics was designed. Based on the screw theory, the screw constraint topology graph of the closed-loop deployable mechanism was drawn to analyze its degree of freedom as 1. The deployable mechanism was divided into three modules, and the principle and process of modular longitudinal expansion were described. Finally, the kinematics model of the m-layer regular n-sided scissor deployable mechanism was established and the prototype of the regular quadrilateral scissor deployable support structure was set up to further verify the variable Poisson motion characteristics of the mechanism, which could provide a theoretical basis for the follw-up research.

Key words: sandwich structure    scissor deployable mechanism    screw theory    kinematics analysis
收稿日期: 2023-10-20 出版日期: 2024-03-04
CLC:  TH 112  
基金资助: 国家自然科学基金资助项目(52005368);天津市高等学校创新团队培养计划资助项目(TD13-5037)
作者简介: 畅博彦(1985—),男,山西运城人,副教授,博士生导师,博士,从事机构学和机械系统动力学研究,E-mail: mmts_tjpu@126.com,https://orcid.org/0000-0002-1106-6609
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
畅博彦
闫圣杰
梁栋
关鑫
韩芳孝

引用本文:

畅博彦,闫圣杰,梁栋,关鑫,韩芳孝. 具有变泊松运动特性的剪叉式折展机构运动学分析[J]. 工程设计学报, 2024, 31(1): 20-30.

Boyan CHANG,Shengjie YAN,Dong LIANG,Xin GUAN,Fangxiao HAN. Kinematics analysis of scissor deployable mechanism with variable Poisson motion characteristics[J]. Chinese Journal of Engineering Design, 2024, 31(1): 20-30.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.306        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I1/20

图1  正 n 边形单闭环折纸模型的折痕分布示意
图2  正四边形单闭环折纸模型
图3  正四边形厚板模型的扩展
图4  常用的夹芯层形状
夹角长度宽度厚度
θ=60°381973
θ=90°5461303
θ=120°7111633
表1  3种新三明治结构的面板设计参数 (mm)
图5  7种三明治结构的变形云图
夹芯层形状应力/Pa变形量/mm夹芯层质量/g
1)1.594 19.473 5×10-5622.406
2)1.610 21.990 2×10-4676.104
3)1.838 65.427 0×10-4640.240
几字形1.380 93.133 0×10-41 316.016
拱形3.406 72.347 8×10-31 322.404
梯形2.149 88.376 0×10-41 342.403
蜂窝形2.836 21.281 0×10-31 806.590
表2  7种三明治结构的最大应力、最大变形量和夹芯层质量
图6  夹角 θ 对正四边形支撑结构泊松比效应的影响
图7  正 n 边形厚板模型的等效机构模型
图8  θ=60°时正四边形剪叉式折展机构的负泊松比效应示意
图9  θ=120°时正四边形剪叉式折展机构的正泊松比效应示意
图10  正四边形剪叉式折展机构横向应变的变化曲线
图11  正四边形剪叉式折展机构及其坐标系
图12  正四边形剪叉式折展机构的旋量约束拓扑图
图13  m 层正四边形剪叉式折展机构
图14  3层正四边形剪叉式折展机构的运动过程
图15  3层正四边形剪叉式折展机构中转动副 D32 处的运动规律
图16  正 n 边形剪叉式折展机构泊松运动特性系数的变化曲线
图17  正四边形支撑结构样机研制
图18  正四边形剪叉式折展支撑结构样机研制
1 邓宗全.空间折展机构设计[M].哈尔滨:哈尔滨工业大学出版社,2013:1-3.
DENG Z Q. Design of space deployable and foldable mechanism[M]. Harbin: Harbin Institute of Technology Press, 2013: 1-3.
2 田大可,高海明,金路,等.模块化空间折展机构研究现状与展望[J].中国空间科学技术,2021,41(4):16-31.
TIAN D K, GAO H M, JIN L, et al. Research status and prospect of modular space deployable and foldable mechanism[J]. Chinese Space Science and Technology, 2021, 41(4): 16-31.
3 徐伟炜.集中荷载下固定铰支剪式可展桥梁结构分析与参数优化[J].东南大学学报(自然科学版),2022,52(6):1063-1070.
XU W W. Structural analysis and parameter optimization of fixed hinged scissor deployable bridges under point load[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(6): 1063-1070.
4 TACHI T. Freeform rigid-foldable structure using bidirectionally flat-foldable planar quadrilateral mesh[M]. Vienna: Springer Vienna, 2010: 87-102.
5 唐愉真,刘超,肖洪,等.可展薄膜的Miura弹性折痕建模与分析[J].哈尔滨工业大学学报,2023,55(1):1-11. doi:10.11918/202203107
TANG Y Z, LIU C, XIAO H, et al. Modeling and analysis of Miura elastic creases for deployable membrane[J]. Journal of Harbin Institute of Technology, 2023, 55(1): 1-11.
doi: 10.11918/202203107
6 MA X F, LI T J, MA J Y, et al. Recent advances in space-deployable structures in China[J]. Engineering, 2022, 17(10): 207-219.
7 杨慧,冯健,刘永斌,等.百米级多超弹性铰链抛物柱面天线折展机构设计与运动学分析[J].机械工程学报,2022,58(3):75-83. doi:10.3901/jme.2022.03.075
YANG H, FENG J, LIU Y B, et al. Design and kinematic analysis of a large deployable mechanism of the parabolic cylindrical antenna with multi tape-spring hinges[J]. Journal of Mechanical Engineering, 2022, 58(3): 75-83.
doi: 10.3901/jme.2022.03.075
8 畅博彦,杨帅,金国光,等.基于直线驱动的空间可展机构运动分析[J].机械工程学报,2020,56(5):192-201. doi:10.3901/jme.2020.05.192
CHANG B Y, YANG S, JIN G G, et al. Motion analysis of spatial deployable mechanism driven in straight line[J]. Journal of Mechanical Engineering, 2020, 56(5): 192-201.
doi: 10.3901/jme.2020.05.192
9 畅博彦,徐鑫,梁栋,等.厚板三浦折展机构的几何设计与运动分析[J].中国空间科学技术,2022,42(4):146-157.
CHANG B Y, XU X, LIANG D, et al. Geometric design and motion analysis of Miura-Ori mechanism with thick panels[J]. Chinese Space Science and Technology, 2022, 42(4): 146-157.
10 杨名远,马家耀,李建民,等.基于厚板折纸理论的微创手术钳[J].机械工程学报,2018,54(17):36-45. doi:10.3901/jme.2018.17.036
YANG M Y, MA J Y, LI J M, et al. Thick-panel origami inspired forceps for minimally invasive surgery[J]. Journal of Mechanical Engineering, 2018, 54(17): 36-45.
doi: 10.3901/jme.2018.17.036
11 EDMONDSON B J, BOWEN L A, GRAMES C L, et al. Oriceps: origami-inspired forceps[C]//ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Snowbird, Utah, Sep. 16-18, 2013.
12 方虹斌,吴海平,刘作林,等.折纸结构和折纸超材料动力学研究进展[J].力学学报,2022,54(1):1-38. doi:10.6052/0459-1879-21-478
FANG H B, WU H P, LIU Z L, et al. Advances in the dynamics of origami structures and origami metamaterials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-38.
doi: 10.6052/0459-1879-21-478
13 YANG L, HARRYSSON O, WEST H, et al. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing[J]. International Journal of Solids and Structures, 2015, 69: 475-490.
14 BABAEE S, SHIM J, WEAVER J C, et al. 3D soft metamaterials with negative Poisson's ratio[J]. Advanced Materials, 2013, 25(36): 5044-5049.
15 GRIMA J N, EVANS K E. Auxetic behavior from rotating squares[J]. Journal of Materials Science Letters, 2000, 19: 1563-1565.
16 WANG X L, QU H B, LI X, et al. Multi-triangles cylindrical origami and inspired metamaterials with tunable stiffness and stretchable robotic arm[J]. PNAS Nexus, 2023, 2(4): pgad098.
17 陈焱.基于机构运动的大变形超材料[J].机械工程学报,2020,56(19):2-13. doi:10.3901/jme.2020.19.002
CHEN Y. Review on kinematic metamaterials[J]. Journal of Mechanical Engineering, 2020, 56(19): 2-13.
doi: 10.3901/jme.2020.19.002
18 YASUDA H, YEIN T, TACHI T, et al. Folding behaviour of Tachi-Miura polyhedron bellows[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469(2159): 20130351.
19 FILIPOV E T, TACHI T, PAULINO G H. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[J]. Proceedings of the National Academy of Sciences, 2015, 112(40): 12321-12326.
20 KAMRAVA S, MOUSANEZHAD D, EBRAHIMI H, et al. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties[J]. Scientific Reports, 2017, 7(1): 1-9.
21 FANG H, CHU S C A, XIA Y, et al. Programmable self-locking origami mechanical metamaterials[J]. Advanced Materials, 2018, 30(15): 1706311.
22 YASUDA H, YANG J. Reentrant origami-based metamaterials with negative Poisson's ratio and bistability[J]. Physical Review Letters, 2015, 114(18): 185502.
23 YANG Y F, YOU Z. A modular origami-inspired mechanical metamaterial[EB/OL]. (2020-12-17) [2023-10-20]. .
24 CHEN Y, LIANG J, SHI P, et al. Inverse design of programmable Poisson's ratio and in-plane stiffness for generalized four-fold origami[J]. Composite Structures, 2023, 311: 116789.
25 WANG H, ZHANG Y, LIN W, et al. A novel two-dimensional mechanical metamaterial with negative Poisson's ratio[J]. Computational Materials Science, 2020, 171: 109232.
26 TAYLOR M, FRANCESCONI L, BALDI A, et al. A novel auxetic structure with enhanced impact performance by means of periodic tessellation with variable Poisson's ratio[C]//Proceedings of the 2018 Annual Conference on Experimental and Applied Mechanics. Berlin: Springer International Publishing, 2019: 211-218.
27 FLEISCH M, THALHAMER A, MEIER G, et al. Asymmetric chiral and antichiral mechanical metamaterials with tunable Poisson's ratio[J]. APL Materials, 2022, 10(6): 061105.
28 PRATAPA P P, LIU K, PAULINO G H. Geometric mechanics of origami patterns exhibiting Poisson's ratio switch by breaking mountain and valley assignment[J]. Physical Review Letters, 2019, 122(15): 155501.
29 KHAN K A, AL-MANSOOR S, KHAN S Z, et al. Piezoelectric metamaterial with negative and zero Poisson's ratios[J]. Journal of Engineering Mechanics, 2019, 145(12): 04019101.
30 刘鸿文.材料力学[M].北京:高等教育出版社,2017:6-9. doi:10.1051/ncssc/201701045
LIU H W. Mechanics of materials[M]. Beijing: Higher Education Press, 2017: 6-9.
doi: 10.1051/ncssc/201701045
[1] 陈明方,黄良恩,张永霞,姚国一. 3-PUU并联机构的运动学分析与验证[J]. 工程设计学报, 2023, 30(6): 763-778.
[2] 张鹏程,牛建业,刘承磊,宋井科,王立鹏,张建军. 牵引式下肢康复机器人机构参数优化及轨迹规划[J]. 工程设计学报, 2022, 29(6): 695-704.
[3] 张春燕,丁兵,何志强,杨杰. 转盘式多足仿生机器人的运动学分析及优化[J]. 工程设计学报, 2022, 29(3): 327-338.
[4] 陈致, 张春燕, 蒋新星, 朱锦翊, 卢晨晖. 一种可重构的空间开/闭链6R移动并联机构的设计与分析[J]. 工程设计学报, 2021, 28(4): 511-520.
[5] 朱锦翊, 张春燕, 卢晨晖. 基于螺旋理论的管道蠕动并联机构的奇异性研究[J]. 工程设计学报, 2021, 28(3): 287-295.
[6] 傅旻, 李晨曦, 郑兆启. 半自动拧取式菠萝采摘收集机的设计与分析[J]. 工程设计学报, 2020, 27(4): 487-497.
[7] 李静, 朱凌云, 苟向锋. 基于人机闭链的下肢康复外骨骼机构运动学分析[J]. 工程设计学报, 2019, 26(1): 65-72,109.
[8] 阴贺生, 张秋菊, 宁萌. 全向移动机器人驱动轮同步转向机构设计[J]. 工程设计学报, 2018, 25(2): 230-236.
[9] 王永奉, 范顺成, 刘更谦, 张小俊, 路光达. 一类具有弧形移动副的3-RPS并联机构研究[J]. 工程设计学报, 2017, 24(6): 717-724.
[10] 王慰军, 杨桂林, 张驰, 陈庆盈. 全向移动机器人驱动万向轮的设计与实现[J]. 工程设计学报, 2016, 23(6): 633-638.
[11] 束智伟,陈新元,邓江洪,詹小辉. 连铸结晶器加渣机布料区域矩形化补偿机构设计[J]. 工程设计学报, 2015, 22(5): 420-424.
[12] 刘方圆,吕传毅,贺 磊. 模块化护理床的下肢机构设计与运动分析[J]. 工程设计学报, 2014, 21(6): 583-588.
[13] 谢俊, 刘月, 肖朝蓬, 杨启志, 邓辉. 三自由度并联物料振动分拣平台机构设计及运动仿真[J]. 工程设计学报, 2013, 20(6): 501-506.
[14] 邱可, 赵永杰, 路松. 三转动数控台跃度逆解分析[J]. 工程设计学报, 2013, 20(2): 131-134.