Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (4): 473-482    DOI: 10.3785/j.issn.1006-754X.2024.03.214
机器人与机构设计     
基于滚动接触的单模块多自由度柔性连续体机械臂设计
周亮(),温涛,胡俊峰(),周浩
江西理工大学 机电工程学院,江西 赣州 341000
Design of single-module multi-degree-of-freedom flexible continuum robotic arm based on rolling contact
Liang ZHOU(),Tao WEN,Junfeng HU(),Hao ZHOU
School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
 全文: PDF(5432 KB)   HTML
摘要:

为实现连续体机械臂的多模态运动,解决现有机械臂只能实现单一弯曲或旋转的问题,设计了一种基于滚动接触的单模块多自由度柔性连续体机械臂。将滚动接触模块作为连续体机械臂弯曲模块的骨架结构,并在弯曲模块内安装旋转模块,以形成具备独立弯曲和旋转运动的多自由度机械臂。采用分段常曲率法建立连续体机械臂的运动学模型,对其刚度性能、弯曲性能和旋转性能进行了分析。制备了连续体机械臂样机,并开展机械臂拧松瓶盖、开启风扇以及在三维空间内避开障碍物抓取目标物体等实验。实验结果表明,利用连续体机械臂的弯曲与旋转组合运动可完成复杂空间环境下的不同任务,体现了复合运动模式的优势。所设计的连续体机械臂具备多模态运动,可为多自由度连续体机械臂的设计提供新思路,拓展了连续体机械臂的应用场景。

关键词: 柔性连续体机械臂单模块滚动接触多模态运动    
Abstract:

In order to realize the multi-modal motion of continuum robotic arm and solve the problem that the existing robotic arm can only achieve single bending or rotation, a single-module multi-degree-of-freedom flexible continuum robotic arm based on rolling contact is designed. The rolling contact module was used as the skeleton structure of the bending module in the continuum robotic arm, and the rotating module was installed in the bending module to form a multi-degree-of-freedom robotic arm with independent bending and rotation motions. The kinematics model of the continuum robotic arm was established by the segmented constant curvature method, and its stiffness, bending and rotation properties were analyzed. A continuum robotic arm prototype was prepared, and experiments were carried out on the robotic arm to unscrew bottle caps, switch on the fan, and grasp the object by avoiding obstacles in the three-dimensional space. The experimental results showed that different tasks in complex spatial environment could be accomplished by the combined motion of bending and rotation, which reflected the advantages of the composite motion mode. The designed continuum robotic arm has multi-modal motion, which provides a new idea for the design of multi-degree-of-freedom continuum robotic arms and expands the application scenarios of continuum robotic arms.

Key words: flexible continuum robotic arm    single-module    rolling contact    multi-modal motion
收稿日期: 2023-11-09 出版日期: 2024-08-26
CLC:  TH 122  
基金资助: 国家自然科学基金资助项目(52165011);江西省自然科学基金资助项目(20212BAB204028)
通讯作者: 胡俊峰     E-mail: 1987002659@qq.com;hjfsuper@126.com
作者简介: 周 亮(1999—),男,浙江绍兴人,硕士生,从事滚动接触、柔性机器人研究,E-mail: 1987002659@qq.com,https://orcid.org/0009-0007-0907-9906
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周亮
温涛
胡俊峰
周浩

引用本文:

周亮,温涛,胡俊峰,周浩. 基于滚动接触的单模块多自由度柔性连续体机械臂设计[J]. 工程设计学报, 2024, 31(4): 473-482.

Liang ZHOU,Tao WEN,Junfeng HU,Hao ZHOU. Design of single-module multi-degree-of-freedom flexible continuum robotic arm based on rolling contact[J]. Chinese Journal of Engineering Design, 2024, 31(4): 473-482.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.214        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I4/473

图1  线驱动柔性连续体机械臂结构对比
图2  基于滚动接触的单模块多自由度柔性连续体机械臂
图3  柔性连续体机械臂位姿示意
图4  柔性连续体机械臂实验平台
图5  柔性连续体机械臂弯曲角度随驱动绳收缩长度的变化曲线
图6  柔性连续体机械臂刚度测量装置
图7  柔性连续体机械臂刚度的变化曲线
图8  柔性连续体机械臂弯曲角度测量装置
图9  柔性连续体机械臂弯曲角度的变化曲线
图10  柔性连续体机械臂旋转性能测试装置
图11  柔性连续体机械臂扭矩随弯曲角度的变化曲线
图12  柔性连续体机械臂拧松瓶盖实验方案

轨迹点坐标/

mm

弯曲角度/(°)拉伸/收缩长度/mm
左驱动绳右驱动绳
(0, 0, -300)000
(-120, 0, -160)71-27.527.5
(100, 0, -175)6525.2-25.2
表1  柔性连续体机械臂拧松瓶盖实验规划参数
图13  柔性连续体机械臂拧松瓶盖的运动过程
图14  柔性连续体机械臂开启风扇实验方案
轨迹点坐标/mm弯曲角度/(°)拉伸/收缩长度/mm
左驱动绳右驱动绳
(0, 0, -300)000
(142, 0, -125)10841.8-41.8
表2  柔性连续体机械臂开启风扇实验规划参数
图15  柔性连续体机械臂开启风扇的运动过程
图16  柔性连续体机械臂三维抓取实验方案
抓取平面轨迹点坐标/mm弯曲角度/(°)拉伸/收缩长度/mm
左驱动绳右驱动绳
前后平面(0, 0, -300)000
(0, 165, -148)11343.8-43.8
左右平面(0, 0, -300)000
(128, 0, -148)8532.9-32.9
(-128, 0, -148)85-32.932.9
表3  柔性连续体机械臂三维抓取实验规划参数
图17  柔性连续体机械臂三维抓取的运动过程
1 朱文斌,李俊,杨进兴,等.基于重力补偿与滤波模型的工业机械臂打磨技术的研究[J].工业控制计算机,2021,34(8):67-69. doi:10.3969/j.issn.1001-182X.2021.08.024
ZHU W B, LI J, YANG J X, et al. Research on polishing technology of industrial mechanical ARM based on gravity compensation and filter model[J]. Industrial Control Computer, 2021, 34(8): 67-69.
doi: 10.3969/j.issn.1001-182X.2021.08.024
2 莫柠锴.面向机械臂抓取应用的高精度目标6D位姿估计[D].深圳:中国科学院大学(中国科学院深圳先进技术研究院),2021.
MO N K. High-precision 6D pose estimation for manipulator grasping[D]. Shenzhen: University of Chinese Academy of Sciences (Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences), 2021.
3 杨文龙.面向单孔腔镜手术的连续型机械臂及其运动建模的研究[D].哈尔滨:哈尔滨工业大学,2016.
YANG W L. Research on kinematic modeling of a continuum manipulator for signle port access laparoscopy surgery[D]. Harbin: Harbin Institute of Technology, 2016.
4 耿浩.面向狭小空间作业的绳驱超冗余机械臂结构设计与研究[D].沈阳:沈阳工业大学,2021.
GENG H. Structure design and research of rope driven hyper-redundant manipulator for narrow space operation[D]. Shenyang: Shenyang University of Technology, 2021.
5 牟宗高.面向狭小空间作业的超冗余机器人轨迹规划及控制研究[D].哈尔滨:哈尔滨工业大学,2017.
MOU Z G. Research on trajectory planning and control of hyper-redundant robots for confined-space operations[D]. Harbin: Harbin Institute of Technology, 2017.
6 刘天亮.面向狭小空间作业的绳索驱动超冗余机械臂的研究[D].哈尔滨:哈尔滨工业大学,2016. doi:10.18869/acadpub.jafm.68.236.25086
LIU T L. A study on the cable-driven and hyper redundant manipulator for the narrow space operations[D]. Harbin: Harbin Institute of Technology, 2016.
doi: 10.18869/acadpub.jafm.68.236.25086
7 朱晓俊,王学谦,马云萱,等.绳驱超冗余空间柔性机械臂遥操作系统设计与实验研究[J].机器人,2022,44(1):9-18. doi:10.13973/j.cnki.robot.210228
ZHU X J, WANG X Q, MA Y X, et al. Design and experimental study on the teleoperation system for cable-driven and hyper-redundant space flexible manipulator[J]. Robot, 2022, 44(1): 9-18.
doi: 10.13973/j.cnki.robot.210228
8 符海明.面向空间应用的连续型绳驱柔性机械臂设计[D]. 哈尔滨:哈尔滨工业大学,2019.
FU H M. Design of continuous flexible cable-driven manipulator for outer space application[D]. Harbin: Harbin Institute of Technology, 2019.
9 王剑,李成刚,岳云双,等.面向航天器零部件装配的机械臂混合控制策略[J].航空科学技术,2022,33(2):90-96.
WANG J, LI C G, YUE Y S, et al. Hybrid control strategy of manipulator for spacecraft component assembly[J]. Aeronautical Science & Technology, 2022, 33(2): 90-96.
10 RICH S I, WOOD R J, MAJIDI C. Untethered soft robotics[J]. Nature Electronics, 2018, 1: 102-112.
11 MANTI M, CACUCCIOLO V, CIANCHETTI M. Stiffening in soft robotics: a review of the state of the art[J]. IEEE Robotics & Automation Magazine, 2016, 23(3): 93-106.
12 HAWKES E W, BLUMENSCHEIN L H, GREER J D, et al. A soft robot that navigates its environment through growth[J]. Science Robotics, 2017, 2(8): eaan3028.
13 MORIMOTO Y, ONOE H, TAKEUCHI S. Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues[J]. Science Robotics, 2017, 3(18): eaat4440.
14 WANG M F, PALMER D, DONG X, et al. Design and development of a slender dual-structure continuum robot for in-situ aeroengine repair[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Oct. 1-5, 2018.
15 HALVERSON P A, HOWELL L L, MAGLEBY S P. Tension-based multi-stable compliant rolling-contact elements[J]. Mechanism and Machine Theory, 2010, 45(2): 147-156.
16 HANNAN M W, WALKER I D. Kinematics and the implementation of an elephant’s trunk manipulator and other continuum style robots[J]. Journal of Robotic Systems, 2003, 20(2): 45-63.
17 MORALES BIEZE T, KRUSZEWSKI A, CARREZ B, et al. Design, implementation, and control of a deformable manipulator robot based on a compliant spine[J]. The International Journal of Robotics Research, 2020, 39(14): 1604-1619.
18 牛景达.具有旋转运动的连续体机械臂设计及性能分析 [D].赣州:江西理工大学,2022:3-40.
NIU J D. Design and performance analysis of continuum manipulator with rotating motion[D]. Ganzhou: Jiangxi University of Science and Technology, 2022: 3-40.
19 WALKER I D, DAWSON D M, FLASH T, et al. Continuum robot arms inspired by cephalopods[C]//Proceedings Volume 5804, Unmanned Ground Vehicle Technology VII. Orlando, Florida, May 27, 2005.
20 McMAHAN W, JONES B A, WALKER I D. Design and implementation of a multi-section continuum robot: Air-Octor[C]//2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, AB, Aug. 2-6, 2005.
21 McMAHAN W, CHITRAKARAN V, CSENCSITS M, et al. Field trials and testing of the OctArm continuum manipulator[C]//Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando, FL, May 15-19, 2006.
22 CHEN X Q, ZHANG X, LIU H, et al. Design and development of a soft robotic manipulator[J]. International Journal of Mechanics and Materials in Design, 2020, 16(2): 309-321.
23 ZHANG Z, TANG S J, FAN W C, et al. Design and analysis of hybrid-driven origami continuum robots with extensible and stiffness-tunable sections[J]. Mechanism and Machine Theory, 2022, 169: 104607.
24 MONTIERTH J R, TODD R H, HOWELL L L. Analysis of elliptical rolling contact joints in compression[J]. Journal of Mechanical Design, 2011, 133(3): 031001.
25 KIM Y J, CHENG S B, KIM S, et al. A stiffness-adjustable hyperredundant manipulator using a variable neutral-line mechanism for minimally invasive surgery[J]. IEEE Transactions on Robotics, 2014, 30(2): 382-395.
26 KIMURA N, IWATSUKI N. Spatial rolling contact pair generating the specified relative motion between links[M]//Lecture Notes in Electrical Engineering. Singapore: Springer Singapore, 2016: 307-316.
27 SUH J, KIM K, JEONG J, et al. Design considerations for a hyper-redundant pulleyless rolling joint with elastic fixtures[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(6): 2841-2852.
28 董栋.基于滚动接触的机器人设计与运动分析[D].赣州:江西理工大学,2023.
DONG D. Design and motion analysis of continuous robot based on rolling contact[D]. Ganzhou: Jiangxi University of Science and Technology, 2023.
29 JONES B A, WALKER I D. Kinematics for multisection continuum robots[J]. IEEE Transactions on Robotics, 2006, 22(1): 43-55.
30 CHAWLA A. FRAZELLE C, WALKER I. A comparison of constant curvature forward kinematics for multisection continuum manipulators[C]//2018 Second IEEE International Conference on Robotic Computing (IRC). Laguna Hills, CA, Jan. 31-Feb. 2, 2018.
[1] 张淏,杨琪,连宾宾,孙涛. 基于张拉整体结构的可变形移动机器人的设计与实验研究[J]. 工程设计学报, 2024, 31(4): 438-445.
[2] 沈剑雄,刘迎圆,王乐勤. 基于深度学习的翼型参数化建模方法[J]. 工程设计学报, 2024, 31(3): 292-300.
[3] 蔡锦云,刘忠,王罡,赵庆斌,安宁,杜旭伟,李东良,李源周. 基于响应面法的绞磨机辅助拉尾绳装置优化设计[J]. 工程设计学报, 2024, 31(2): 178-187.
[4] 李新革,廖红玉,周敏,陈萌萌,谢良喜. 抹灰机摆动喷涂机构创新设计与分析[J]. 工程设计学报, 2024, 31(2): 248-253.
[5] 杨开科,罗俊鹏,马文静,耿远超,王德恩,袁强. 高带宽压电片变形镜的动力学仿真与优化方法研究[J]. 工程设计学报, 2024, 31(1): 130-136.
[6] 陈振中,黄冬宇,田娇,李晓科,吴子豪. 基于二阶抛物线近似的结构可靠性分析方法[J]. 工程设计学报, 2024, 31(1): 50-58.
[7] 张雷,方俊伟,苏金,蔡闯,赵云起. 基于FSRce模型的机电产品绿色概念设计方案生成方法[J]. 工程设计学报, 2024, 31(1): 10-19.
[8] 李佳,宋梅利,冯君,汤海斌. 面向激光增材制造的仿生薄壁结构抗冲击研究[J]. 工程设计学报, 2024, 31(1): 67-73.
[9] 田立勇,唐瑞,于宁,陈洪月. 带式输送机更换托辊用皮带举升机构设计与应用[J]. 工程设计学报, 2023, 30(6): 667-677.
[10] 陈明方,黄良恩,张永霞,姚国一. 3-PUU并联机构的运动学分析与验证[J]. 工程设计学报, 2023, 30(6): 763-778.
[11] 白仲航,艾琳璟. 基于功能表面驱动与可拓工具的产品人机工程问题确定方法研究[J]. 工程设计学报, 2023, 30(5): 531-544.
[12] 谢博伟,金莫辉,杨洲,段洁利,屈明宇,李锦辉. 3D打印TPU材料的力学性能及模型参数研究[J]. 工程设计学报, 2023, 30(4): 419-428.
[13] 杜雪林,易文慧,邹家华,周灿,毛立,邓利诗,刘颖. 多关节蛇形机器人的结构设计和运动实现[J]. 工程设计学报, 2023, 30(4): 438-448.
[14] 王金栋,谢宇鸿,陈燚,吴展扬. 基于河狸门齿的锤片式粉碎机锤片仿生设计[J]. 工程设计学报, 2023, 30(4): 476-484.
[15] 官俊,丁医华,葛青涛,赵帅,陆杨,张婕. 基于多材料3D打印技术的RFID天线快速制造[J]. 工程设计学报, 2023, 30(3): 288-296.