Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (1): 67-73    DOI: 10.3785/j.issn.1006-754X.2024.03.317
可靠性与保质设计     
面向激光增材制造的仿生薄壁结构抗冲击研究
李佳1(),宋梅利1,冯君2,汤海斌3()
1.南京理工大学 机械工程学院,江苏 南京 210094
2.南京理工大学 瞬态物理国家重点实验室,江苏 南京 210094
3.南京理工大学 智能制造学院,江苏 南京 210094
Study on impact resistance of bio-inspired thin-walled structure for laser additive manufacturing
Jia LI1(),Meili SONG1,Jun FENG2,Haibin TANG3()
1.School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2.State Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China
3.School of Intelligent Manufacturing, Nanjing University of Science and Technology, Nanjing 210094, China
 全文: PDF(1762 KB)   HTML
摘要:

冲击载荷是航空航天装备结构设计中不可忽视的因素,设计承载能力高、吸能特性好的薄壁结构是研究热点。综合骨骼和蜂窝的结构特征,基于Voronoi算法,开展了类蜂窝六边形结构伪随机排布;参考骨质内疏松外紧密的排布特征,进行分区设计,来构造新型抗冲击结构。通过激光选区熔化钛合金及激光选区烧结碳纤维/PEEK(polyether ether ketone,聚醚醚酮)复合材料仿生薄壁结构和均布蜂窝结构的抗冲击仿真,对比了2种结构的吸能特性。仿真结果表明:相比于均布蜂窝结构,在轴向冲击条件下,激光选区熔化钛合金和激光选区烧结纤维/PEEK复合材料仿生薄壁结构的最大吸能量分别提高了17.7%和27.7%;在侧向冲击条件下,最大吸能量分别提高了422.6%和99.2%。所设计的仿生薄壁抗冲击结构在航空航天领域具有重要的应用前景。

关键词: 薄壁结构仿生设计抗冲击激光选区熔化激光选区烧结    
Abstract:

The impact load is an important factor in the structural design of aerospace equipment. The design of thin-walled structures with high load-bearing capacity and good energy-absorbing characteristics is a research focus. Based on Voronoi algorithm, the pseudo-random arrangement of structure similar to honeycomb hexagon was developed by combining the structural characteristics of bone and honeycomb. According to the arrangement of loose inside and tight outside of the bone, a new type of impact resistant structure was constructed by partition design.The impact resistance simulation of bio-inspired thin-walled structure and uniform honeycomb structure of laser selective melted titanium alloy and laser selective sintered carbon fiber/PEEK (polyether ether ketone) composites was conducted to compare the energy-absorbing characteristics of the two kinds of structure. The simulation results showed that the maximum energy-absorption of the bio-inspired thin-walled structure of laser selective melting titanium alloy and laser selective sintered carbon fiber/PEEK composites was increased by 17.7% and 27.7% respectively, compared with the uniform honeycomb structure under axial impact, and the maximum energy-absorption was increased by 422.6% and 99.2% respectively under lateral impact.The bio-inspired thin-walled structure designed has important application prospects in aerospace field.

Key words: thin-walled structure    bio-inspired design    impact resistant    laser selective melting    laser selective sintering
收稿日期: 2023-10-20 出版日期: 2024-03-04
CLC:  TH 122  
基金资助: 国家自然科学基金资助项目(52305382);航空航天结构力学及控制全国重点实验室开放课题(MCMS-E-0423Y01)
通讯作者: 汤海斌     E-mail: lijia9317@njust.edu.cn;htang28@njust.edu.cn
作者简介: 李 佳(1999—),男,河南信阳人,硕士生,从事仿生设计研究,E-mail: lijia9317@njust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李佳
宋梅利
冯君
汤海斌

引用本文:

李佳,宋梅利,冯君,汤海斌. 面向激光增材制造的仿生薄壁结构抗冲击研究[J]. 工程设计学报, 2024, 31(1): 67-73.

Jia LI,Meili SONG,Jun FENG,Haibin TANG. Study on impact resistance of bio-inspired thin-walled structure for laser additive manufacturing[J]. Chinese Journal of Engineering Design, 2024, 31(1): 67-73.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.317        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I1/67

图1  基于Voronoi算法的类蜂窝六边形结构生成过程示意
图2  仿生薄壁结构和均布蜂窝结构模型
图3  仿生薄壁结构轴向抗冲击有限元仿真模型
塑性应力/MPa塑性应变
1 086.000
1 090.651.636×10-5
1 162.120.001 090 0
1 173.540.002 646 5
1 180.770.010 949 1
1 181.050.015 992 0
1 181.150.021 022 7
1 181.180.024 363 3
表1  激光选区熔化钛合金的塑性参数
塑性应力/MPa塑性应变
46.000 00
51.899 10.000 870
67.647 80.003 220
77.508 20.004 840
83.544 10.005 904
90.527 20.007 182
99.843 60.009 092
109.997 00.011 528
115.231 40.013 060
117.300 00.014 724
表2  激光选区烧结碳纤维/PEEK复合材料的塑性参数
图4  激光选区熔化钛合金仿生薄壁结构和均布蜂窝结构轴向抗冲击仿真结果
图5  激光选区烧结碳纤维/PEEK复合材料仿生薄壁结构和均布蜂窝结构轴向抗冲击仿真结果
图6  激光选区熔化钛合金仿生薄壁结构和均布蜂窝结构侧向抗冲击仿真结果
图7  激光选区烧结碳纤维/PEEK复合材料仿生薄壁结构和均布蜂窝结构侧向抗冲击仿真结果
1 HASBROOK A H. Crash injury research: A means of greater safety in aircraft accidents[J]. Journal of Aviation Medicine, 1957, 28(6): 541-552.
2 CHOW C L, JIE M, YAO Y. Design optimization of metallic hexagonal cross sections[J]. International Journal of Crashworthiness, 2004(1): 25-33.
3 FARUQUE O, SAHA N, GUIMBERTEAU T. Extruded aluminum crash can topology for maximizing specific energy absorption[C]//SAE Technical Paper Series, Detroit, Apr. 14-17, 2008.
4 JULIAN F V, MANN D L. Systematic technology transfer from biology to engineering[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2002, 360: 159-173.
5 XU S, BEYNON J H, RUAN D, et al. Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs[J]. Composite Structures, 2012, 94(8): 2326-2336.
6 ZHANG Q, YANG X, LI P, et al. Bioinspired engineering of honeycomb structure: Using nature to inspire human innovation[J]. Progress in Materials Science, 2015, 74: 332-400.
7 YANG X, SUN Y, YANG J, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure[J]. Thin-Walled Structures, 2018, 125: 1-11.
8 MA Q, CHENG H, JANG K I, et al. A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures[J]. Journal of the Mechanics & Physics of Solids, 2016, 90: 179-202.
9 HU Z, THIYAGARAJAN K, BHUSAL A, et al. Design of ultra-lightweight and high-strength cellular structural composites inspired by biomimetics[J]. Composites Part B Engineering, 2017, 121B: 108-121.
10 NIAN Y, WAN S, LI X, et al. How does bio-inspired graded honeycomb filler affect energy absorption characteristics[J]. Thin-Walled Structures, 2019, 144: 106269.
11 ZHANG S X, LI J, BI C, et al. Design and load-bearing capacity analysis of bone-inspired lightweight microstructures[C]//International Conference of Computational Methods, Ho Chi Minh City, Aug. 6-10, 2023.
12 MATTHECK C, BURKHARDT S. A new method of structural shape optimization based on biological growth[J]. International Journal of Fatigue, 1990, 12(3): 185-190.
13 HE Q, FENG J, CHEN Y, et al. Mechanical properties of spider-web hierarchical honeycombs subjected to out-of-plane impact loading[J]. Journal of Sandwich Structures and Materials, 2020, 22(3): 771-796.
14 ZHANG X C, SHEN Z F, WU H X, et al. In-plane dynamic crushing behaviors of joint-based hierarchical honeycombs with different topologies[J]. Journal of Sandwich Structures and Materials, 2021, 23(8): 4218-4251.
15 于鹏山,刘志芳,李世强.新型仿生蜂窝结构的设计与耐撞性能分析[J].高压物理学报,2022,36(1):147-158.
YU P S, LIU Z F, LI S Q, et al. Design and crashworthiness analysis of new bionic honeycomb structure[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 147-158.
16 ZOU M, XU S C, WEI C G, et al. A bionic method for the crashworthiness design of thin-walled structures inspired by bamboo[J]. Thin-Walled Structures, 2016,101: 222-230.
17 SONG J F, XU S C, WANG H X, et al. Bionic design and multi-objective optimization for variable wall thickness tube inspired bamboo structures[J]. Thin-Walled Structures, 2018, 125: 76-88.
18 YU Y J, ZOU M, XU S C, et al. Structure and mechanical characteristic of cattle horns[J]. Journal of Mechanics in Medicine and Biology, 2014, 14(6): 1440011.
19 张安煜,王连进,仪垂杰,等.仿荷薄壁管的耐撞性研究[J].青岛大学学报(工程技术版),2018,33(2):86-90.
ZHANG A Y, WANG L J, YI C J, et al. Study to crash worthiness of thin-walled circle tube based on lotus[J]. Journal of Qingdao University (Engineering & Technology Edition), 2018, 33(2): 86-90.
20 TANG H B, HUANG H J, LIU C Y, et al. Multi-scale modelling of structure-property relationship in additively manufactured metallic materials[J]. International Journal of Mechanical Sciences, 2020, 194: 106185.
[1] 王金栋,谢宇鸿,陈燚,吴展扬. 基于河狸门齿的锤片式粉碎机锤片仿生设计[J]. 工程设计学报, 2023, 30(4): 476-484.
[2] 陈亮, 陈博文, 刘晓敏, 窦昊. 用户需求映射网络生物文本的创新设计方法[J]. 工程设计学报, 2020, 27(3): 279-286.
[3] 张潇, 张秋菊. 仿人手掌的机器人变掌机构设计与分析[J]. 工程设计学报, 2019, 26(4): 385-394.
[4] 蒋锐, 陈阳, 于成信, 王晓飞, 朱德泉. 仿蟋蟀切齿叶减阻灭茬刀片设计与试验[J]. 工程设计学报, 2018, 25(4): 409-419.
[5] 章永华, 何建慧, 颜 钦. 仿生机器鲫鱼的设计及运动学实验研究[J]. 工程设计学报, 2011, 18(3): 167-173.
[6] 鄢建辉, 汪久根. 带孔板仿生孔形状的强度设计[J]. 工程设计学报, 2003, 10(6): 355-357.