Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (1): 42-50    DOI: 10.3785/j.issn.1006-754X.2025.04.127
机器人与机构设计     
基于领航-跟随及人工势场的环卫机器人编队研究
谢宇明1(),尹汉锋2(),肖慧慧1
1.复杂环境特种机器人控制技术与装备湖南省工程研究中心,湖南 湘潭 411104
2.湖南大学 机械与运载工程学院,湖南 长沙 410082
Research on environmental sanitation robot formation based on leader-follower and artificial potential field
Yuming XIE1(),Hanfeng YIN2(),Huihui XIAO1
1.Hunan Engineering Research Center of Control Technology and Equipment of Special Robot in Complex Environment, Xiangtan 411104, China
2.College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
 全文: PDF(4858 KB)   HTML
摘要:

针对环卫机器人集群作业时存在编队稳定性差的问题,创新性地提出了一种结合领航-跟随策略与人工势场算法的编队控制方法。首先,根据环卫机器人的结构特点,基于领航-跟随策略构建了其运动学模型。然后,针对环卫机器人的复杂作业环境,采用人工势场算法进行编队避障,并提出了全新的编队变换策略,以使机器人能够顺利通过背街小巷等作业场景,从而实现多机器人的协同作业。最后,利用MATLAB软件开展仿真实验并在实际作业场景中开展实验测试。结果表明,所提出的方法可使环卫机器人编队在复杂作业场景中有效避障及通过狭窄通道,同时实现队形的稳定保持与灵活变换;编队稳定时跟随机器人的跟踪误差保持在0.1 m以下,实验结果验证了该编队控制方法的有效性。研究结果为环卫机器人在不同作业场景下的编队控制提供了参考。

关键词: 环卫机器人领航-跟随策略人工势场算法编队控制方法    
Abstract:

Aiming at the problem of poor formation stability of environmental sanitation robots during cluster operations, an innovative formation control method combining the leader-follower strategy and artificial potential field algorithm is proposed. Firstly, according to the structural characteristics of the environmental sanitation robot, its kinematics model was constructed based on the leader-follower strategy. Then, in view of the complex operation environment of environmental sanitation robots, the artificial potential field algorithm was employed for formation obstacle avoidance, and a novel formation transformation strategy was proposed to enable robots to smoothly pass through the working scenarios such as back streets and alleys, so as to realize the cooperative operation of multi-robots. Finally, the simulation experiments were conducted by MATLAB software and the experimental test was carried out in the actual operation scenario. The results showed that the proposed method could effectively facilitate the formation of environmental sanitation robots to avoid obstacles and pass through narrow passage in complex operation scenarios, while achieving stable formation maintenance and flexible transformation. The tracking error of the following robot remained below 0.1 m when the formation was stable, and the experimental results verified the effectiveness of the formation control method. The research results provide reference for the formation control of environmental sanitation robots in different operation scenarios.

Key words: environmental sanitation robot    leader-follower strategy    artificial potential field algorithm    formation control method
收稿日期: 2024-03-28 出版日期: 2025-03-04
CLC:  TP 24  
基金资助: 国家自然科学基金资助项目(11972153);湖南省教育厅科学研究项目(23C0703);湖南省自然科学基金资助项目(2024JJ8084)
作者简介: 谢宇明(1988—),男,高级工程师,硕士,从事机器人开发及控制研究,E-mail: 402497758@qq.com,https://orcid.org/0009-0007-7507-971X|尹汉锋(1982—),男,教授,博士,从事智能装备优化设计研究,E-mail: yinhanfeng@hnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谢宇明
尹汉锋
肖慧慧

引用本文:

谢宇明,尹汉锋,肖慧慧. 基于领航-跟随及人工势场的环卫机器人编队研究[J]. 工程设计学报, 2025, 32(1): 42-50.

Yuming XIE,Hanfeng YIN,Huihui XIAO. Research on environmental sanitation robot formation based on leader-follower and artificial potential field[J]. Chinese Journal of Engineering Design, 2025, 32(1): 42-50.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.127        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I1/42

图1  单个环卫机器人的运动学模型
图2  环卫机器人实际作业编队
图3  环卫机器人编队模型
图4  环卫机器人避障流程
图5  环卫机器人编队变换
图6  环卫机器人编队避障时的运动状态
图7  环卫机器人编队避障时的运动轨迹
图8  环卫机器人编队避障时的速度和角速度曲线
图9  环卫机器人编队变换时的运动状态
图10  环卫机器人编队变换时的运动轨迹
图11  环卫机器人编队变换时的速度和角速度曲线
图12  跟随机器人的跟踪误差
图13  环卫机器人编队
图14  环卫机器人结构
图15  环卫机器人编队作业实验结果
1 王耀南, 江一鸣, 姜娇, 等. 机器人感知与控制关键技术及其智能制造应用[J]. 自动化学报, 2023, 49(3): 494-513.
WANG Y N, JIANG Y M, JIANG J, et al. Key technologies of robot perception and control and its intelligent manufacturing applications[J]. Acta Automatica Sinica, 2023, 49(3): 494-513.
2 ZHANG K T, CHERMPRAYONG P, XIAO F, et al. Aerial additive manufacturing with multiple autonomous robots[J]. Nature, 2022, 609(7928): 709-717.
3 张振国, 毛建旭, 谭浩然, 等. 重大装备制造多机器人任务分配与运动规划技术研究综述[J]. 自动化学报, 2024, 50(1): 21-41
ZHANG Z G, MAO J X, TAN H R, et al. A review of task allocation and motion planning for multi-robot in major equipment manufacturing[J]. Acta Automatica Sinica, 2024, 50(1): 21-41.
4 邓辅秦, 黄焕钊, 谭朝恩, 等. 结合遗传算法和滚动调度的多机器人任务分配算法[J]. 计算机应用, 2023, 43(12): 3833-3839. doi:10.11772/j.issn.1001-9081.2022121916
DENG F Q, HUANG H Z, TAN C E, et al. Multi-robot task allocation algorithm combining genetic algorithm and rolling scheduling[J]. Journal of Computer Applications, 2023, 43(12): 3833-3839.
doi: 10.11772/j.issn.1001-9081.2022121916
5 邓国琛. 无人车多车协同控制技术研究[D]. 济南: 济南大学, 2022: 1-5.
DENG G C. Research on multi vehicle cooperative control technology of unmanned vehicle[D]. Jinan: University of Jinan, 2022: 1-5.
6 付雷, 秦一杰, 何顶新, 等. 基于改进人工势场法的多机器人编队避障[J]. 控制工程, 2022, 29(3): 388-396.
FU L, QIN Y J, HE D X, et al. Obstacle avoidance in multi-robot formation based on improved artificial potential field[J]. Control Engineering of China, 2022, 29(3): 388-396.
7 PAN Z H, ZHANG C X, XIA Y Q, et al. An improved artificial potential field method for path planning and formation control of the multi-UAV systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3): 1129-1133.
8 ZHUANG H C, DONG K L, WANG N, et al. Multi-robot leader grouping consistent formation control method research with low convergence time based on nonholonomic constraints[J]. Applied Sciences, 2022, 12(5): 2300.
9 DESAI J P, OSTROWSKI J, KUMAR V. Controlling formations of multiple mobile robots[C]//Proceedings of 1998 IEEE International Conference on Robotics and Automation. Leuven, May 20, 1998.
10 黎星华, 刘晓平, 王刚, 等. 面向多智能消防机器人的编队避障控制方法[J]. 机器人, 2024, 46(1): 81-93.
LI X H, LIU X P, WANG G, et al. A formation obstacle-avoidance control method for multiple intelligent firefighting robots[J]. Robot, 2024, 46(1): 81-93.
11 王琳, 张庆杰, 陈宏伟. 基于领航者跟随者的群系统保性能编队控制[J]. 北京航空航天大学学报, 2024, 50(3): 1037-1046.
WANG L, ZHANG Q J, CHEN H W. Guaranteed-performance formation control of swarm systems based on leader-follower strategy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(3): 1037-1046.
12 熊勇刚, 付茂林, 李波, 等. 基于领航-跟随法的多机器人编队控制[J]. 机电工程技术, 2024, 53(3): 136-141.
XIONG Y G, FU M L, LI B, et al. Multi-robot formation control based on pilot-following method[J]. Mechanical & Electrical Engineering Technology, 2024, 53(3): 136-141.
13 庄红超, 王柠, 董凯伦, 等. 非完整约束大负重比六足机器人多机动态协同编队避障控制策略[J]. 机械工程学报, 2024, 60(1): 284-295. doi:10.3901/jme.2024.01.284
ZHUANG H C, WANG N, DONG K L, et al. Obstacle avoidance control strategy of multi-robot dynamic cooperative formation of large-load-ratio six-legged robot under nonholonomic constraints[J]. Journal of Mechanical Engineering, 2024, 60(1): 284-295.
doi: 10.3901/jme.2024.01.284
14 张晓莉, 王张哲. 基于领航-跟随模型的井下多移动机器人编队研究[J]. 矿业研究与开发, 2022, 42(2): 179-182.
ZHANG X L, WANG Z Z. Research on underground multi-mobile robots formation based on leader-follower model[J]. Mining Research and Development, 2022, 42(2): 179-182.
15 陈冠星. 动态环境下多机器人编队及避障控制策略研究[D]. 南京: 南京理工大学, 2021: 38-43.
CHEN G X. Research on formation and obstacle avoidance control strategy of multiple robots in dynamic environment[D]. Nanjing: Nanjing University of Science and Technology, 2021: 38-43.
16 ZHANG T, DONG D B, DU Z Z, et al. Swarm control based on artificial potential field method with predicted state and input threshold[J]. Engineering Applications of Artificial Intelligence, 2023, 125: 106567.
17 ZHANG W, XU G J, SONG Y, et al. An obstacle avoidance strategy for complex obstacles based on artificial potential field method[J]. Journal of Field Robotics, 2023, 40(5): 1231-1244.
18 杨立炜, 李萍, 权赫, 等. 基于蚁群混合人工势场法的多机器人编队运动[J]. 电光与控制, 2024, 31(9): 52-57, 80.
YANG L W, LI P, QUAN H, et al. Motion of multi-robot formation based on ACO and APF[J]. Electronics Optics & Control, 2024, 31(9): 52-57, 80.
19 辛鹏, 王艳辉, 刘晓立, 等. 优化改进RRT和人工势场法的路径规划算法[J]. 计算机集成制造系统, 2023, 29(9): 2899-2907.
XIN P, WANG Y H, LIU X L, et al. Path planning algorithm based on optimize and improve RRT and artificial potential field[J]. Computer Integrated Manufacturing Systems, 2023, 29(9): 2899-2907.
20 时培成, 陈旭, 杨爱喜, 等. 4WID-4WIS智能车阿克曼转向轨迹规划及位置估算[J]. 工程设计学报, 2022, 29(2): 123-132.
SHI P C, CHEN X, YANG A X, et al. Ackerman steering trajectory planning and position estimation of 4WID-4WIS intelligent vehicle[J]. Chinese Journal of Engineering Design, 2022, 29(2): 123-132.
[1] 覃超,唐东林,游东潘,丁超,饶胜,何媛媛. 基于改进RTAB-Map算法的爬壁机器人导航研究[J]. 工程设计学报, 2025, 32(1): 32-41.
[2] 杨培,张明路,孙凌宇. 爬壁机器人磁吸附模块设计分析与结构参数优化[J]. 工程设计学报, 2024, 31(5): 592-602.
[3] 刘鑫,李飞虎. 基于概率-区间混合模型的六足机器人运动稳定性优化设计方法[J]. 工程设计学报, 2024, 31(5): 585-591.
[4] 许哲,代威,曹宇,李永国,张舜. 欠驱动型ROV改进设计与纵倾优化[J]. 工程设计学报, 2024, 31(4): 483-490.
[5] 朱慧轩,崔广泽,李炳南,郭凯,王蔚,李松. 面向皮肤大面积损伤修复的原位打印系统工作空间分析[J]. 工程设计学报, 2024, 31(4): 529-537.
[6] 张博洋,冯永利,黄金凤,黄宝旺. 新型水冷壁机器人设计及其电永磁轮研究[J]. 工程设计学报, 2024, 31(4): 446-455.
[7] 俞青松,徐向荣,刘胤真. 基于Transformer的机器人像素级抓取位姿检测[J]. 工程设计学报, 2024, 31(2): 238-247.
[8] 何州,王阳,蒋翔宇,洪兆溪,何利力,冯毅雄. 融合多主体需求频率特征的复杂产品全生命周期价值链协同设计[J]. 工程设计学报, 2024, 31(1): 1-9.
[9] 张瑞,蒋婉玥. 基于视觉跟踪与自主导航的移动机器人目标跟随系统[J]. 工程设计学报, 2023, 30(6): 687-696.
[10] 田雅琴,胡梦辉,刘文涛,侯寅智. 基于跳点搜索-遗传算法的自主移动机器人路径规划[J]. 工程设计学报, 2023, 30(6): 697-706.
[11] 赵万博,陈赛旋,姜官武,李荣,章宇. 新型线驱动式微创手术器械结构设计与运动学分析[J]. 工程设计学报, 2023, 30(6): 657-666.
[12] 李明烁,孟令帅,谷海涛,曹新星,张明远. 基于 USVAUV布放回收系统设计与实现[J]. 工程设计学报, 2023, 30(5): 650-656.
[13] 李琦琦,徐向荣,张卉. 基于自适应神经网络的机械臂滑模轨迹跟踪控制[J]. 工程设计学报, 2023, 30(4): 512-520.
[14] 张栋,杨培,黄哲轩,孙凌宇,张明路. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
[15] 陈贵亮,李子浩,蔡超,李永超,杨冬. 基于人体动力学分析的下肢外骨骼助力设计及机构优化[J]. 工程设计学报, 2023, 30(3): 362-371.