Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (4): 529-537    DOI: 10.3785/j.issn.1006-754X.2024.03.202
整机和系统设计     
面向皮肤大面积损伤修复的原位打印系统工作空间分析
朱慧轩1,2,3,4(),崔广泽1,2,3,李炳南2,3,郭凯2,3,王蔚1,李松2,3()
1.沈阳工业大学 机械工程学院,辽宁 沈阳 110870
2.中国科学院沈阳自动化研究所 机器人学国家重点实验室,辽宁 沈阳 110016
3.中国科学院 机器人与智能制造创新研究院,辽宁 沈阳 110169
4.中国科学院大学,北京 100049
Workspace analysis of in situ printing system for repairing large-skin wounds
Huixuan ZHU1,2,3,4(),Guangze CUI1,2,3,Bingnan LI2,3,Kai GUO2,3,Wei WANG1,Song LI2,3()
1.School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
2.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
3.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
4.University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(3358 KB)   HTML
摘要:

皮肤大面积损伤修复一直是临床上亟待解决的难题。目前,常用的修复方法主要为自体皮肤移植和伤口敷料治疗,但这些方法不能同时满足皮肤大面积修复和定制化治疗的需求。原位皮肤打印技术为皮肤大面积损伤修复提供了新思路,但现有的生物打印设备打印范围小且打印精度低,无法实现皮肤大面积组织的随形打印。为解决上述问题,提出了一种由Stewart并联机器人、直线模组机构、打印头和三维扫描仪等组成的原位皮肤打印系统。其中,Stewart并联机器人的重复定位精度高且累积误差小,其作为打印驱动装置可实现高精度的皮肤原位打印;Stewart并联机器人具有6个自由度,可在三维空间中实时调整打印角度,使得生物墨水能够沿皮肤曲面完整地覆盖在皮肤损伤处,有利于伤口修复。为分析所设计原位皮肤打印系统的可行性,通过数值法计算并联机器人的工作空间,得到了原位皮肤打印系统的工作范围,并通过打印实验进行了验证。实验结果表明,并联机器人可按照指定路径运行,打印头在打印过程中可稳定喷射生物墨水;原位皮肤打印系统的工作范围与并联机器人的工作空间基本吻合,可满足皮肤大面积损伤修复的需求。研究结果为后续的皮肤大面积修复动物实验奠定了理论基础。

关键词: 皮肤大面积损伤修复原位皮肤打印技术并联机器人工作空间    
Abstract:

The repair of large-skin wounds has been a difficult problem to be solved urgently. At present, the commonly used repair methods are mainly autologous skin transplantation and wound dressing treatment, but these methods cannot simultaneously meet the needs of large-skin repair and customized repairment. The in situ skin printing technology provides a new idea for the repair of large-skin wounds. However, the existing bioprinting equipment has small printing range and low printing precision, which cannot realize the shape printing of large area of skin tissue. In order to solve the above problems, an in situ skin printing system composed of Stewart parallel robot, linear module mechanism, print head and 3D scanner was proposed. The Stewart parallel robot could achieve high-precision skin in situ printing as printing driving device due to high repeated positioning precision and low cumulative error. The Stewart parallel robot had six degrees of freedom and could adjust the printing angle in 3D space, allowing bioink to fully cover the skin wounds along the skin surface, which was beneficial for wound repair. In order to analyze the feasibility of the designed in situ skin printing system, the workspace of the parallel robot was calculated by numerical method, and the working range of the in situ skin printing system was obtained and verified through printing experiments. The experimental results showed that the parallel robot operated according to the specified path, and the print head could stably inject bioink during the printing process. The working range of the in situ skin printing system was basically consistent with the workspace of the parallel robot, which met the needs of repairing large-skin wounds. The research results lay a theoretical foundation for the subsequent animal experiments on large-skin repair.

Key words: repair of large-skin wounds    in situ skin printing technology    parallel robot    workspace
收稿日期: 2023-09-12 出版日期: 2024-08-26
CLC:  TP 242.2  
基金资助: 国家自然科学基金资助项目(52205319);中国科学院青年创新促进会项目(2021200)
通讯作者: 李松     E-mail: zhuhuixuan@sia.cn;lisong@sia.cn
作者简介: 朱慧轩(1989—),男,山东昌邑人,副研究员,博士生,从事生物制造研究,E-mail: zhuhuixuan@sia.cn,https://orcid.org.0009-0004-0030-6445
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱慧轩
崔广泽
李炳南
郭凯
王蔚
李松

引用本文:

朱慧轩,崔广泽,李炳南,郭凯,王蔚,李松. 面向皮肤大面积损伤修复的原位打印系统工作空间分析[J]. 工程设计学报, 2024, 31(4): 529-537.

Huixuan ZHU,Guangze CUI,Bingnan LI,Kai GUO,Wei WANG,Song LI. Workspace analysis of in situ printing system for repairing large-skin wounds[J]. Chinese Journal of Engineering Design, 2024, 31(4): 529-537.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.202        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I4/529

图1  原位皮肤打印系统及其收纳箱示意图
图2  Stewart并联机器人结构简图
图3  坐标旋转变换示意
图4  Stewart并联机器人工作空间
图5  原位皮肤打印系统仿真模型
图6  打印头质心沿 X 方向的移动距离
图7  原位皮肤打印系统样机
图8  海藻酸钠打印实验结果对比
图9  明胶打印实验结果
图10  平滑肌细胞形态
图11  细胞打印实验结果
图12  打印后平滑肌细胞分布情况
1 STANTON D N, GANGULI-INDRA G, INDRA A K, et al. Bioengineered efficacy models of skin disease: advances in the last 10 years[J]. Pharmaceutics, 2022, 14(2): 319.
2 CHOUHAN D, DEY N, BHARDWAJ N, et al. Emerging and innovative approaches for wound healing and skin regeneration: current status and advances[J]. Biomaterials, 2019, 216: 119267.
3 ZENG D, SHEN S H, FAN D D. Molecular design, synthesis strategies and recent advances of hydrogels for wound dressing applications[J]. Chinese Journal of Chemical Engineering, 2021, 30: 308-320.
4 PISANI S, DORATI R, SCOCOZZA F, et al. Preliminary investigation on a new natural based poly (gamma-glutamic acid)/Chitosan bioink[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2020, 108(7): 2718-2732.
5 NOROUZI M, BOROUJENI S M, OMIDVARKOR DSHOULI N, et al. Advances in skin regeneration: application of electrospun scaffolds[J]. Advanced Healthcare Materials, 2015, 4(8): 1114-1133.
6 王瑞.生物3D打印技术构建dECM基人工皮肤的研究[D].泉州:华侨大学,2021.
WANG R. Research on 3D bioprinting technology to construct dECM-based artificial skin[D]. Quanzhou: Huaqiao University, 2021.
7 MURPHY S V, ATALA A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32: 773-785.
8 TSENG H, GAGE J A, HAISLER W L, et al. A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting[J]. Scientific Reports, 2016, 6: 30640.
9 OZBOLAT I T. Bioprinting scale-up tissue and organ constructs for transplantation[J]. Trends in Biotechnology, 2015, 33(7): 395-400.
10 NG W L, WANG S, YEONG W Y, et al. Skin bioprinting: impending reality or fantasy?[J]. Trends in Biotechnology, 2016, 34(9): 689-699.
11 PARK J A, LEE H R, PARK S Y, et al. Self-organization of fibroblast-laden 3D collagen microstructures from inkjet-printed cell patterns[J]. Advanced Biosystems, 2020, 4(5): 1900280.
12 PARK J A, YOON S, KWON J, et al. Freeform micropatterning of living cells into cell culture medium using direct inkjet printing[J]. Scientific Reports, 2017, 7: 14610.
13 YOON S, PARK J A, LEE H R, et al. Inkjet-spray hybrid printing for 3D freeform fabrication of multilayered hydrogel structures[J]. Advanced Healthcare Materials, 2018, 7(14): e1800050.
14 连伟龙,连芩,焦天,等.皮肤修复生物3D打印的研究进展与挑战[J].光电工程,2021,48(8):210105.
LIAN W L, LIAN Q, JIAO T, et al. The research progress and challenge of 3D bioprinting for skin repairing[J]. Opto-Electronic Engineering, 2021, 48(8): 210105.
15 HAKIMI N, CHENG R, LENG L, et al. Handheld skin printer: in situ formation of planar biomaterials and tissues[J]. Lab on a Chip, 2018, 18(10): 1440-1451.
16 赵占盈,徐铭恩,石然,等.基于细胞3D打印技术的肿瘤药物筛选细胞芯片研究[J].中国生物医学工程学报,2014,33(2):161-169.
ZHAO Z Y, XU M E, SHI R, et al. Research of anti-tumor drug screening cell chip based on 3D cell printing technique[J]. Chinese Journal of Biomedical Engineering, 2014, 33(2): 161-169.
17 张伟.面向软体机器人的软材料嵌入式3D打印基础研究[D].苏州:苏州大学,2021.
ZHANG W. Experimental research on embedded 3D printing technology with soft materials for soft robotics[D]. Suzhou: Soochow University, 2021.
18 王润秋.模拟生物软组织应变硬化特性的超材料结构设计与3D打印方法研究[D].杭州:浙江大学,2020.
WANG R Q. Research on metamaterial structure design and 3D printing method for simulating strain-stiffening property of biological soft tissue[D]. Hangzhou: Zhejiang University, 2020.
19 蔡自兴.机器人学[M].2版.北京:清华大学出版社,2009:1-30.
CAI Z X. Robotics[M]. 2nd ed. Beijing: Tsinghua University Press, 2009: 1-30.
20 黄真,赵永生,赵铁石.高等空间机构学[M].2版.北京:高等教育出版社,2014:159-184.
HUANG Z, ZHAO Y S, ZHAO T S. Advanced spatial mechanism[M]. 2nd ed. Beijing: Higher Education Press, 2014: 159-184.
21 WANG Y J, FANG C, JIANG Q M. Singularity-free workspace of parallel robots[J]. Advances in Robotics & Automation, 2015, 4(2): 1000122.
22 吴生富,王洪波,黄真.并联机器人工作空间的研究[J].机器人,1991,13(3):33-39.
WU S F, WANG H B, HUANG Z. Study of workspace in parallel robot manipulator[J]. Robot, 1991, 13(3): 33-39.
23 KUMAR V. Characterization of workspaces of parallel manipulators[J]. Journal of Mechanical Design, 1992, 114(3): 368-375.
24 魏修亭,李刚,杜强,等.6-PTRT型齿顶倒角机器人运动学及工作空间分析[J].中国机械工程,2013,24(6):750-754.
WEI X T, LI G, DU Q, et al. Kinematic analysis and workspace calculation of a 6-PTRT manipulator for chamfering gear addendum[J]. China Mechanical Engineering, 2013, 24(6): 750-754
25 于晖,孙立宁,刘品宽,等.新型 6-HTRT 并联机器人工作空间和参数研究[J].机器人,2002,24(4):293-298,313.
YU H, SUN L N, LIU P K, et al. Study on the workspace and parameter of novel 6-HTRT parallel robot[J]. Robot, 2002, 24(4): 293-298, 313.
[1] 陈明方,黄良恩,张永霞,姚国一. 3-PUU并联机构的运动学分析与验证[J]. 工程设计学报, 2023, 30(6): 763-778.
[2] 李岳,邓云蛟,敖然,侯雨雷,曾达幸. 可适径调整管道清淤机器人结构设计与运动分析[J]. 工程设计学报, 2023, 30(3): 353-361.
[3] 张春燕,江毅文,杨杰,蒋新星. 可变向多地形移动全R副并联机器人[J]. 工程设计学报, 2023, 30(2): 189-199.
[4] 刘繁茂,廖灿灿,张原愿,莫寒. 新型碟式太阳能跟踪平台设计和姿态工作空间分析[J]. 工程设计学报, 2022, 29(5): 616-626.
[5] 梁栋, 梁正宇, 畅博彦, 齐杨, 徐振宇. 多臂机提综臂辅助旋铆并联机器人优化设计[J]. 工程设计学报, 2022, 29(1): 28-40.
[6] 刘卓, 连宾宾, 李祺. 基于有限和瞬时旋量理论的Exechon并联机器人运动学分析[J]. 工程设计学报, 2020, 27(3): 357-363.
[7] 卢佳伟, 张秋菊, 赵宏磊. 助老服务机器人设计及仿人运动研究[J]. 工程设计学报, 2020, 27(2): 269-278.
[8] 杨诗怡, 张峰峰, 范立成, 匡绍龙, 孙立宁. 放疗床多目标协调机构参数优化研究[J]. 工程设计学报, 2016, 23(3): 256-263.
[9] 李保坤,郭永存,王传礼,曹 毅. Gough-Stewart并联机构姿态空间与全局姿态能力分析[J]. 工程设计学报, 2015, 22(5): 452-460.
[10] 王南,周海栋,崔国华,徐丰. 基于三转动并联机构的茶叶筛分装置运动学性能研究[J]. 工程设计学报, 2014, 21(3): 266-272.
[11] 谭兴强, 贾舒媛, 谢志江. 6_PUS并联机器人动力学性能参数优化设计[J]. 工程设计学报, 2013, 20(6): 470-475.
[12] 杨尹, 顾寄南, 郭林. 基于ADAMS的4RUPaR高速搬运并联机器人轨迹规划与运动学仿真[J]. 工程设计学报, 2013, 20(5): 375-382.
[13] 惠记庄, 魏芳胜, 高凯, 丁香. 基于ADAMS的冗余驱动并联机器人动力学仿真研究[J]. 工程设计学报, 2012, 19(5): 362-365.
[14] 尹小琴, 赵广红, 马履中. 中医推拿机器人末端执行器工作空间分析[J]. 工程设计学报, 2012, 19(4): 302-306.
[15] 马明智, 芮延年, 张飞, 乔冬冬. 基于可拓自适应理论的三轴并联机器人控制系统设计[J]. 工程设计学报, 2012, 19(1): 53-56.