产品创新设计 |
|
|
|
|
融合多主体需求频率特征的复杂产品全生命周期价值链协同设计 |
何州1,2( ),王阳3,蒋翔宇4,洪兆溪4,5( ),何利力3,冯毅雄4,6 |
1.浙江工商大学 萨塞克斯人工智能学院,浙江 杭州 310012 2.杭州州力数据科技有限公司,浙江 杭州 310019 3.浙江理工大学 计算机科学与技术学院,浙江 杭州 310018 4.浙江大学 流体动力基础件与机电系统全国重点实验室,浙江 杭州 310058 5.浙江大学 宁波科创中心,浙江 宁波 315100 6.贵州大学 省部共建公共大数据国家重点实验室,贵州 贵阳 550025 |
|
Collaborative design of complex product lifecycle value chain by fusing multi-agent demand frequency characteristics |
Zhou HE1,2( ),Yang WANG3,Xiangyu JIANG4,Zhaoxi HONG4,5( ),Lili HE3,Yixiong FENG4,6 |
1.Sussex Artificial Intelligence Institute, Zhejiang Gongshang University, Hangzhou 310012, China 2.Hangzhou Zhouli Data Technology Co. , Ltd. , Hangzhou 310019, China 3.School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China 4.State Key Laboratory of Fundamental Components of Fluid Power and Mechatronic systems, Zhejiang University, Hangzhou 310058, China 5.Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China 6.State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China |
引用本文:
何州,王阳,蒋翔宇,洪兆溪,何利力,冯毅雄. 融合多主体需求频率特征的复杂产品全生命周期价值链协同设计[J]. 工程设计学报, 2024, 31(1): 1-9.
Zhou HE,Yang WANG,Xiangyu JIANG,Zhaoxi HONG,Lili HE,Yixiong FENG. Collaborative design of complex product lifecycle value chain by fusing multi-agent demand frequency characteristics[J]. Chinese Journal of Engineering Design, 2024, 31(1): 1-9.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.03.207
或
https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I1/1
|
1 |
杨海民,潘志松,白玮.时间序列预测方法综述[J].计算机科学,2019,46(1):21-28. doi:10.11896/j.issn.1002-137X.2019.01.004 YANG H M, PAN Z S, BAI W. Review of time series prediction methods[J]. Computer Science, 2019, 46(1): 21-28.
doi: 10.11896/j.issn.1002-137X.2019.01.004
|
2 |
王静,曹春正.基于贝叶斯分层自回归时空模型的北京PM2.5预测[J].南京信息工程大学学报(自然科学版),2023,15(1):34-41. WANG J, CAO C Z. Prediction of PM2.5 concentration in Beijing based on Bayesian hierarchical autoregressive spatio-temporal model[J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 2023, 15(1): 34-41.
|
3 |
陈然.指数平滑与自回归融合预测模型及应用研究[D]. 阜新:辽宁工程技术大学,2021. CHEN R. Index smoothing and autoregressive fusion forecasting model and its empirical study[D]. Fuxin: Liaoning Technical University, 2021.
|
4 |
余廷芳,张浩杰.基于SVM和RBF神经网络的CFB NOx生成预测模型[J].计算机仿真,2020,37(9):209-213. doi:10.3969/j.issn.1006-9348.2020.09.043 YU T F, ZHANG H J. NOx generation prediction model of coal-fired boiler based on SVM and RBF neural network[J]. Computer Simulation, 2020, 37(9): 209-213.
doi: 10.3969/j.issn.1006-9348.2020.09.043
|
5 |
高塔.基于改进贝叶斯网络的高维数据本地差分隐私方法的研究[D].北京:北京交通大学,2021. GAO T. Research on local differential privacy method for high-dimensional data based on improved Bayesian network[D]. Beijing: Beijing Jiaotong University, 2021.
|
6 |
MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge. Cambridge, Massachusetts, USA: MIT Press, 2014: 2204-2212.
|
7 |
武晋鹏.基于样本精选与BERT模型引导的图像情感分析研究[D].南昌:华东交通大学,2021. WU J P. Image sentiment analysis based on sample refinement and BERT guided[D]. Nanchang: East China Jiaotong University, 2021.
|
8 |
XIANG Y, FOX D. DA-RNN: semantic mapping with data associated recurrent neural networks[C]//13th Conference on Robotics-Science and Systems, Cambridge, Massachusetts, Jul. 12-16, 2017.
|
9 |
QIN Y, SONG D, CHEN H, et al. A dual-stage attention-based recurrent neural network for time series prediction[EB/OL]. [2023-10-06]..
|
10 |
HOCHREITER S. Long short-term memory[J]. Neural Computation, 1997(9): 1735-1780.
|
11 |
SESTI N, GARAU-LUIS J J, CRAWLEY E, et al. Integrating LSTMs and GNNs for COVID-19 forecasting[J]. arXiv preprint arXiv:, 2021.
|
12 |
王素.基于深度学习的时间序列预测算法研究与应用[D].成都:电子科技大学,2022. WANG S. Research and application of time series prediction algorithm based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
|
13 |
CHO K, VAN MERRIENBOER B, BAHDANAU D, et al. On the properties of neural machine translation: Encoder-Decoder approaches[EB/OL]. [2023-10-06]. .
|
14 |
VASWANI A, SHAZEER N, PARMAR N. Attention is all you need[EB/OL]. [2023-10-06]..
|
15 |
LIN L, LUO H, HUANG R, et al. Recurrent models of visual co-attention for person re-identification[J]. IEEE Access, 2019, 7: 8865-8875.
|
16 |
陈超.基于神经网络的多变量时间序列预测[D].成都:电子科技大学,2022. CHEN C. Multivariate time prediction based on neural network[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
|
17 |
MIKOLOV T, SUTSKEVER I, KAI C, et al. Distributed representations of words and phrases and their compositionality[C]//NIPS'13: Proceedings of the 26th International Conference on Neural Information Processing Systems: Volume 2. New York: ACM, 2013: 3111-3119.
|
18 |
WANGA R, LOUA J, JIANGA Y. Session-based recommendation with time-aware neural attention network[J]. Expert Systems with Applications, 2022, 210: 118395.
|
19 |
陈士超,郁滨.面向术语抽取的双阈值互信息过滤方法[J].计算机应用,2011,31(4):1070-1073. doi:10.3724/sp.j.1087.2011.01070 CHEN S C, YU B. Method of mutual information filtration with dual-threshold for term extraction[J]. Journal of Computer Applications, 2011, 31(4): 1070-1073.
doi: 10.3724/sp.j.1087.2011.01070
|
20 |
曹昀炀.基于Transformer的选股因子挖掘[D].上海:华东师范大学,2022. CAO Y Y. Based on Transformer stock factor construction[D]. Shanghai: East China Normal University, 2022.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|