Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (1): 32-41    DOI: 10.3785/j.issn.1006-754X.2025.04.131
机器人与机构设计     
基于改进RTAB-Map算法的爬壁机器人导航研究
覃超1(),唐东林1(),游东潘1,丁超2,饶胜1,何媛媛3
1.西南石油大学 机电工程学院,四川 成都 610500
2.成都工业学院 智能制造学院,四川 成都 611730
3.四川省特种设备检验研究院,四川 成都 610061
Research on navigation of wall-climbing robot based on improved RTAB-Map algorithm
Chao QIN1(),Donglin TANG1(),Dongpan YOU1,Chao DING2,Sheng RAO1,Yuanyuan HE3
1.School of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu 610500, China
2.School of Intelligent Manufacturing, Chengdu Technology University, Chengdu 611730, China
3.Sichuan Special Equipment Inspection Institute, Chengdu 610061, China
 全文: PDF(4531 KB)   HTML
摘要:

针对爬壁机器人难以对大型石化装备壁面感知和自动化检测等难题,提出了一种改进RTAB-Map(real-time appearance-based mapping,基于外观的实时建图)算法,通过多传感器数据融合实现爬壁机器人定位、建图与导航。首先,搭建了具有壁面吸附能力的机器人运动底盘,以保证爬壁机器人在壁面灵活稳定运动;其次,针对爬壁机器人在壁面滑移导致的里程计累计误差问题,采用扩展卡尔曼滤波并融合编码器和惯性测量单元的数据,为建图和导航提供精确的里程计信息;再次,基于RTAB-Map算法对深度相机、激光雷达及里程计的数据进行融合,生成二维栅格和三维点云地图,实现对装备壁面的完整描述,并基于融合数据构建了爬壁机器人导航算法的框架;最后,在装备壁面进行了实验验证。结果表明:采用融合里程计算法,能显著减小航向角误差,航向角平均误差为0.78°,相对轮式里程计规划,航向角误差减少了88.94%;改进RTAB-Map算法提高了爬壁机器人在壁面环境下的建图与感知能力,结合路径规划算法,实现了机器人自主导航。研究结果对爬壁机器人自动化检测技术的研究及应用具有一定的参考意义。

关键词: 爬壁机器人RTAB-Map(基于外观的实时建图)算法扩展卡尔曼滤波多传感器融合导航    
Abstract:

Aiming at the difficulty of wall-climbing robot in wall sensing and automated detection of large petrochemical equipment, an improved RTAB-Map (real-time appearance-based mapping) algorithm was proposed to realize the wall-climbing robot's localization, mapping and navigation by fusing multiple sensor data. Firstly, a robot motion chassis with wall adsorption ability was built to ensure the flexible and stable movement of the wall-climbing robot on the wall surface. Secondly, to address the cumulative error of the odometer resulting from the wall-climbing robot's slippage on the wall surface, the extended Kalman filter was utilized to fuse the data of encoder and inertial measurement unit to provide accurate odometer information for mapping and navigation. Thirdly, based on the RTAB-Map algorithm, the data of depth camera, LiDAR and odometer were fused to generate 2D grid and 3D point cloud map to realize a complete description of the equipment wall, and the navigation algorithm framework of the wall-climbing robot was constructed based on the fusion data. Finally, the experimental validation was carried out on the equipment wall. The results showed that the yaw angle error could be significantly reduced by using fusion mileage method, the average error of yaw angle was reduced by 88.94% compared with that under wheel odometer planning with an average error of 0.78°. The improved RTAB-Map algorithm improved the wall-climbing robot's mapping and sensing ability in the wall environment, and realized the autonomous navigation combined with the path planning algorithm. The research results have a certain reference significance for the research and application of automated detection technology of wall-climbing robots.

Key words: wall-climbing robot    RTAB-Map (real-time appearance-based mapping) algorithm    extended Kalman filtering    multi sensor fusion    navigation
收稿日期: 2024-04-15 出版日期: 2025-03-04
CLC:  TP 242.2  
基金资助: 国家市场监督管理总局科技计划项目(2022MK115);四川省重点研发计划项目(2002ZYZFGY04);南充市-西南石油大学市校科技战略合作项目(23XNSYSX0048)
通讯作者: 唐东林     E-mail: 1804478662@qq.com;tdl840451816@163.com
作者简介: 覃 超(1999—),男,硕士生,从事爬壁机器人技术及应用等研究,E-mail: 1804478662@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
覃超
唐东林
游东潘
丁超
饶胜
何媛媛

引用本文:

覃超,唐东林,游东潘,丁超,饶胜,何媛媛. 基于改进RTAB-Map算法的爬壁机器人导航研究[J]. 工程设计学报, 2025, 32(1): 32-41.

Chao QIN,Donglin TANG,Dongpan YOU,Chao DING,Sheng RAO,Yuanyuan HE. Research on navigation of wall-climbing robot based on improved RTAB-Map algorithm[J]. Chinese Journal of Engineering Design, 2025, 32(1): 32-41.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.131        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I1/32

图1  爬壁机器人实物图
图2  爬壁机器人底盘结构
参数数值
整体质量/kg6.5
主体尺寸(长×宽×高)/mm×mm×mm288×260×163
永磁体数量/个2
最大驱动力/N500
最大磁吸力/N150
表1  爬壁机器人底盘结构主要技术参数
图3  改进RTAB-Map算法框架
图4  传感器数据同步过程
图5  导航算法框架
图6  A*算法原理图
图7  机器人壁面轨迹推算示意图
图8  里程计误差测试实验现场
图9  爬壁机器人运动轨迹
图10  爬壁机器人航向角
图11  爬壁机器人航向角误差
序号融合前误差/(°)融合后误差/(°)
最大值平均值最大值平均值
113.276.382.120.85
212.756.031.800.68
313.998.600.480.02
412.756.063.370.60
513.607.643.571.82
613.077.002.180.56
713.636.982.060.51
814.428.792.550.53
913.196.403.351.38
1013.926.432.020.85
表2  融合前后爬壁机器人航向角误差
图12  机器人爬壁实验平台
图13  壁面环境建图效果
图14  机器人壁面导航实验
参数数值参数数值
最大牵引速度/(m/s)0.15最大角速度/(rad/s)0.5
最小牵引速度/(m/s)0最小角速度/(rad/s)0.1
最大加/减速度/(m/s20.5最大角加/减速度/(rad/s23.5
牵引速度采样点数量/个10角速度采样点数量/个10
表3  导航实验运动学参数
图15  机器人壁面避障实验
1 ZHANG B Y, LI H H, WANG W. Numerical study of dynamic response and failure analysis of spherical storage tanks under external blast loading[J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 209-217.
2 赵金龙, 唐卿, 黄弘, 等. 基于数值模拟的大型外浮顶储罐区定量风险评估[J]. 清华大学学报(自然科学版), 2015, 55(10): 1143-1149.
ZHAO J L, TANG Q, HUANG H, et al. Quantitative risk assessment of external floating roof tank areas based on the numerical simulations[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(10): 1143-1149.
3 卢俊华, 朱海飞, 梁经伦, 等. 双足爬壁机器人三维壁面环境全局路径规划[J]. 哈尔滨工业大学学报, 2020, 52(1): 148-155.
LU J H, ZHU H F, LIANG J L, et al. Global path planning for a biped wall-climbing robot in 3D wall environment[J]. Journal of Harbin Institute of Technology, 2020, 52(1): 148-155.
4 宋伟, 姜红建, 王滔, 等. 爬壁机器人磁吸附组件优化设计与试验研究[J]. 浙江大学学报(工学版), 2018, 52(10): 1837-1844.
SONG W, JIANG H J, WANG T, et al. Optimization design and experimental research on magnetic components for wall-climbing robot[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(10): 1837-1844.
5 FANG Y, WANG S, BI Q S, et al. Design and technical development of wall-climbing robots: a review[J]. Journal of Bionic Engineering, 2022, 19(4): 877-901.
6 方璇, 刘俊锋, 陈勇. 基于SLAM的爬壁机器人自主移动研究[J]. 制造业自动化, 2023, 45(6): 85-88.
FANG X, LIU J F, CHEN Y. Research on autonomous movement of the wall-climbing robot based on SLAM[J]. Manufacturing Automation, 2023, 45(6): 85-88.
7 丁超, 李刚俊, 唐东林. 储罐轮式机器人转向磁吸附力[J]. 科学技术与工程, 2019, 19(27): 217-223.
DING C, LI G J, TANG D L. Dynamic magnetic adsorption force of tank wheeled robot steering[J]. Science Technology and Engineering, 2019, 19(27): 217-223.
8 ZHANG X J, ZHANG X, ZHANG M L, et al. Optimization design and flexible detection method of wall-climbing robot system with multiple sensors integration for magnetic particle testing[J]. Sensors, 2020, 20(16): 4582.
9 张文, 杨耀鑫, 黄天帜, 等. ArUco辅助的爬壁机器人自主定位方法[J]. 机器人, 2024, 46(1): 27-35, 44.
ZHANG W, YANG Y X, HUANG T Z, et al. ArUco-assisted autonomous localization method for wall climbing robots[J]. Robot, 2024, 46(1): 27-35, 44.
10 张文, 丁雨林, 陈咏华, 等. 基于外部视觉与机载IMU组合的爬壁机器人自主定位方法[J]. 清华大学学报(自然科学版), 2022, 62(9): 1524-1531.
ZHANG W, DING Y L, CHEN Y H, et al. Autonomous positioning for wall climbing robots based on a combination of an external camera and a robot-mounted inertial measurement unit[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(9): 1524-1531.
11 张小俊, 刘昊学. 基于数据融合的爬壁机器人控制系统设计[J]. 传感器与微系统, 2023, 42(4): 103-106.
ZHANG X J, LIU H X. Design of wall-climbing robot control system based on data fusion[J]. Transducer and Microsystem Technologies, 2023, 42(4): 103-106.
12 丁杰月, 张延兵, 谈英姿. 基于多传感器融合的爬壁机器人控制系统研究[J]. 机械设计与制造工程, 2018, 47(12): 57-62.
DING J Y, ZHANG Y B, TAN Y Z. Research on the control system of wall-climbing robot based on multi-sensor fusion[J]. Machine Design and Manufacturing Engineering, 2018, 47(12): 57-62.
13 汪潼, 朱世强, 宋伟, 等. 立式罐容量计量中爬壁机器人的路径规划[J]. 机器人, 2024, 46(1): 36-44.
WANG T, ZHU S Q, SONG W, et al. Path planning for wall-climbing robot in volume measurement of vertical tank[J]. Robot, 2024, 46(1): 36-44.
14 张军, 韦鹏, 王古超. 基于ROS的全向移动机器人定位导航系统研究[J]. 组合机床与自动化加工技术, 2020(6): 119-122. doi:10.18178/ijmerr.9.11.1502-1508
ZHANG J, WEI P, WANG G C. Research on location and navigation system for omnidirectional mobile robot based on ROS[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(6): 119-122.
doi: 10.18178/ijmerr.9.11.1502-1508
15 危双丰, 庞帆, 刘振彬, 等. 基于激光雷达的同时定位与地图构建方法综述[J]. 计算机应用研究, 2020, 37(2): 327-332. doi:10.19734/j.issn.1001-3695.2018.09.0674
WEI S F, PANG F, LIU Z B, et al. Survey of LiDAR-based SLAM algorithm[J]. Application Research of Computers, 2020, 37(2): 327-332.
doi: 10.19734/j.issn.1001-3695.2018.09.0674
16 郑丽丽, 孙伟, 刘明明. 基于粒子滤波的自主移动机器人快速定位方法[J]. 传感器与微系统, 2020, 39(10): 31-34.
ZHENG L L, SUN W, LIU M M. Fast localization method of autonomous mobile robots based on particle filtering[J]. Transducer and Microsystem Technologies, 2020, 39(10): 31-34.
17 LIU Y H, LIM B, LEE J W, et al. Steerable dry-adhesive linkage-type wall-climbing robot[J]. Mechanism and Machine Theory, 2020, 153: 103987.
18 LIU J F, XU L S, XU J J, et al. Analysis and optimization of the wall-climbing robot with an adsorption system and adhesive belts[J]. International Journal of Advanced Robotic Systems, 2020, 17(3): 1729881420926409.
19 汪建华, 黄磊, 石雨婷, 等. 基于优化Hector-SLAM算法的机器人自主导航系统设计[J]. 工程设计学报, 2023, 30(6): 678-686.
WANG J H, HUANG L, SHI Y T, et al. Design of robot autonomous navigation system based on optimized Hector-SLAM algorithm[J]. Chinese Journal of Engineering Design, 2023, 30(6): 678-686.
20 LI Y Q, TANG X D, LI Z K, et al.Multi-sensor information fusion for mobile robots[J].Journal of Northwestern Polytechnical University, 2021,39(S1):59-65.
21 COLONNIER F, DELLA VEDOVA L, ORCHARD G. ESPEE: event-based sensor pose estimation using an extended Kalman filter[J]. Sensors, 2021, 21(23): 7840.
22 MALLIOS A, RIDAO P, RIBAS D, et al. EKF-SLAM for AUV navigation under probabilistic sonar scan-matching[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE, 2010: 4404-4411.
23 LABBÉ M, MICHAUD F. RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation[J]. Journal of Field Robotics, 2019, 36(2): 416-446.
24 HUANG Z, XU Z, CAO Z, et al. Graphic information processing algorithm based on visual word-of-bag model [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43: 233-236.
25 LIN Y Z, FENG C H, WANG Z X, et al. UAV design and control with A* algorithm[J]. International Core Journal of Engineering, 2021, 7(12): 212-224.
[1] 杨培,张明路,孙凌宇. 爬壁机器人磁吸附模块设计分析与结构参数优化[J]. 工程设计学报, 2024, 31(5): 592-602.
[2] 张瑞,蒋婉玥. 基于视觉跟踪与自主导航的移动机器人目标跟随系统[J]. 工程设计学报, 2023, 30(6): 687-696.
[3] 汪建华,黄磊,石雨婷,张晓倩,祁良剑. 基于优化Hector-SLAM算法的机器人自主导航系统设计[J]. 工程设计学报, 2023, 30(6): 678-686.
[4] 张栋,杨培,黄哲轩,孙凌宇,张明路. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
[5] 田立勇,孙业新,于宁,陈洪月,马春莹. 基于组合方式的掘进机导航系统研究[J]. 工程设计学报, 2022, 29(2): 254-262.
[6] 钟道方, 田颖, 张明路. 轮腿式爬壁机器人的永磁吸附装置设计与优化[J]. 工程设计学报, 2022, 29(1): 41-50.
[7] 张洪, 邱晓天. 基于EtherCATROS全向移动导航系统[J]. 工程设计学报, 2021, 28(2): 241-247.
[8] 王昕煜, 平雪良. 基于多传感器融合信息的移动机器人速度控制方法[J]. 工程设计学报, 2021, 28(1): 63-71.
[9] 王颜, 刘净瑜, 李光, 张加波, 刘星, 周欣欣. 基于IGPS和麦克纳姆轮的AGV导航控制系统设计[J]. 工程设计学报, 2020, 27(5): 662-670.
[10] 唐东林, 龙再勇, 汤炎锦, 潘峰, 游传坤. 储罐检测爬壁机器人全遍历路径规划[J]. 工程设计学报, 2020, 27(2): 162-171.
[11] 李磊, 肖世德, 李兴坤, 董庆丰. 多传感器融合的智能车定位导航系统设计[J]. 工程设计学报, 2019, 26(2): 182-189.
[12] 唐东林, 李茂扬, 丁超, 魏子兵, 胡琳, 袁波. 轮式爬壁机器人转向稳定性研究[J]. 工程设计学报, 2019, 26(2): 153-161.
[13] 唐东林, 袁波, 胡琳, 李茂扬, 魏子兵. 储罐探伤爬壁机器人全遍历路径规划方法[J]. 工程设计学报, 2018, 25(3): 253-261.
[14] 华 亮, 冯 浩, 顾菊平, 张建生. 基于单超声波传感器的移动机器人沿墙导航策略[J]. 工程设计学报, 2008, 15(3): 206-212.