Please wait a minute...
工程设计学报  2017, Vol. 24 Issue (3): 273-279    DOI: 10.3785/j.issn.1006-754X.2017.03.005
保质设计     
基于改进型能量守恒SOC估算法的电动汽车三段式智能充电方式研究
邓涛, 李志飞, 陈冰曲, 谭海鑫
重庆交通大学 机电与车辆工程学院, 重庆 400074
Research on three-stage intelligent charging method based on improved energy conservation SOC estimation algorithm for electric vehicle
DENG Tao, LI Zhi-fei, CHEN Bing-qu, TAN Hai-xin
School of Mechatronics & Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074
 全文: PDF(1598 KB)   HTML
摘要:

为研究电动汽车安全、快速的智能充电方式,基于传统能量守恒法,考虑电池容量衰减和电池内阻损失对荷电状态(state of charge,SOC)估算的影响,提出改进型能量守恒SOC估算方法。对比分析几种传统充电方式,根据马斯定理确定最佳充电电流,提出以改进型能量守恒SOC估算法得到的SOC值作为判断依据的电动汽车三段式(小电流充电、脉冲充电、恒压充电)智能充电方式,并建立其仿真模型。结果表明:改进型能量守恒SOC估算法得到的SOC值要小于传统能量守恒法,其更加接近真实SOC值;三段式智能充电方式能根据电池组SOC值的变化智能地选择具体充电方式,实现了对电池的安全、快速充电。提出的基于改进型能量守恒SOC估算的三段式智能充电方式对当前电动汽车充电方式的研究提供了一定的参考价值,为智能充电方式研究效能的提升提供了一种可行方法,也为智能充电理论应用于工程实践打下基础。

关键词: 电动汽车SOC改进型能量守恒法三段式智能充电仿真    
Abstract:

In order to study the safe and high-efficiency intelligent charging method for electric vehicle, the improved energy conservation SOC estimation algorithm which considers the effects of the battery capacity attenuation and the internal resistance loss on the SOC estimation is proposed. The improved SOC estimation algorithm was based on the traditional energy conservation method. Then, in order to verify the accuracy and feasibility of estimation algorithms, the above proposed improved SOC estimation algorithm was analyzed and compared with the traditional charging methods. Furthermore, according to the optimal charging current with Maas Theorem, the three-stage intelligent charging method (small current charging, pulse charging and constant voltage charging) was proposed based on the improved energy conservation SOC estimation algorithm,and the three-stage intelligent charging simulation model based on the improved energy conservation SOC estimation algorithm was established. The simulation results showed that the SOC value obtained by the improved energy conservation SOC estimation algorithm was smaller than the value obtained by the traditional energy conservation method. And the SOC value obtained by the improved energy conservation SOC estimation algorithm was more close to the real SOC value. Moreover, the three-stage intelligent charging method based on the improved energy conservation SOC estimation algorithm can intelligently select the detailed charging method according to the SOC variation, which could realize the fast and safe charging for electric vehicle. The proposed three-stage intelligent charging method can provide reference for current charging method study for electric vehicle. And the improved SOC estimation algorithm can also provide one feasible method to enhance the effectiveness of the intelligent charging method for electric vehicle. In addition, three-stage intelligent charging method can lay the foundation for application of the intelligent charging theory to engineering practice.

Key words: electric vehicle    SOC    improved energy conservation method    three-stage intelligent charging    simulation
收稿日期: 2016-11-28 出版日期: 2017-06-28
CLC:  U462.3  
基金资助:

国家自然科学基金资助项目(51305473);中国博士后科学基金资助项目(2014M552317);重庆市博士后研究人员科研项目(xm2014032);重庆市基础与前沿研究计划项目(cstc2014jcyjA60006)

作者简介: 邓涛(1982-),男,江西新干人,教授,博士,从事新能源车辆理论及应用研究,E-mail:d82t722@cqjtu.edu.cn, http://orcid.org//0000-0001-6881-9854
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邓涛
李志飞
陈冰曲
谭海鑫

引用本文:

邓涛, 李志飞, 陈冰曲, 谭海鑫. 基于改进型能量守恒SOC估算法的电动汽车三段式智能充电方式研究[J]. 工程设计学报, 2017, 24(3): 273-279.

DENG Tao, LI Zhi-fei, CHEN Bing-qu, TAN Hai-xin. Research on three-stage intelligent charging method based on improved energy conservation SOC estimation algorithm for electric vehicle[J]. Chinese Journal of Engineering Design, 2017, 24(3): 273-279.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2017.03.005        https://www.zjujournals.com/gcsjxb/CN/Y2017/V24/I3/273

[1] 王金勇. 蓄电池几种充电方法的优劣[J]. 设备管理与维修, 2003(4): 35-39. WANG Jin-yong. Advantages and disadvantage of several methods of charging battery[J]. Plant Maintenance Engineering, 2003(4): 35-39.
[2] PASCAL Venet, MICHAEL Millet, JENS Groot. Impact of periodic current pulses on Li-ion battery performance[J]. IEEE Transactions on Industrial Electronics, 2012, 59(9): 3481-3488.
[3] 李敬兆. 采用神经网络预测和变结构模糊控制的铅酸蓄电池最优充电技术研究[D]. 合肥: 合肥工业大学电气与自动化工程学院, 2003: 19-57. LI Jing-zhao. Study on the optimal leaded charging with neural network panda variable structure fuzzy [D]. Hefei: Hefei University of Technology, School of Electrical Engineering and Automation, 2003: 19-57.
[4] 文锋, 姜久春, 张维戈, 等.电动汽车用锂离子电池组充电方法[J]. 汽车工程, 2008, 30(9): 792-795. WEN Feng, JIANG Jiu-chun, ZHANG Wei-ge, et al. Charging method for Li-ion battery pack in electric vehicles[J]. Automotive Engineering, 2008, 30(9): 792-795.
[5] 刘玉杰, 姜印平, 孟祥适. 关于快速脉冲充电技术的研究[J]. 蓄电池, 2004, 41(2): 71-73. LIU Yu-jie, JIANG Yin-ping, MENG Xiang-shi. Study on fast pulse recovery based on PIC single chip[J]. Chinese Labatt Man, 2004, 41(2): 71-73.
[6] 姚雷, 王震坡.锂离子动力电池充电方式的研究[J].汽车工程, 2015, 37(1): 72-77. YAO Lei, WANG Zhen-po. A research on the charging protocols of Lithium-ion tractio battery[J].Automotive Engineering, 2015, 37(1): 72-77.
[7] 王鸿雁, 李广凯, 江政昕.锂离子电池快速充电方法研究[J]. 电源技术, 2012, 36(11): 1616-1619. WANG Hong-yan, LI Guang-kai, JIANG Zheng-xin. Research on fast charge method for lithium ion battery[J].Chinese Journal of Power Sources, 2012, 36(11): 1616-1619.
[8] 陈浩. UPS中铅酸电池的快速、安全充电方式的探讨[D]. 上海: 复旦大学信息科学与工程学院, 2005: 11-21. CHEN Hao. Discussion on fast and safe charging of lead acid battery in UPS[D]. Shanghai: Fudan University, School of Information Science and Technology, 2005: 11-21.
[9] 胡明辉, 秦大同. 混合动力汽车电池管理系统SOC的评价[J]. 重庆大学学报(自然科学版), 2003, 26(4): 20-23. HU Ming-hui, QIN Da-tong. SOC definition of battery management system used in hybrid vehicles[J]. Journal of Chongqing University (Natural Science Edition), 2003, 26(4): 20-23.
[10] 李哲, 仝猛, 卢兰光, 等. 动力型铅酸电池及LiFe PO4锂离子电池的容量特性[J]. 电池, 2009, 39(1): 26-28. LI Zhe, TONG Meng, LU Lan-guang. et al. Capacity characteristics of power lead-acid and LiFePO4 Li-ion batteries [J]. Battery Bimonthly, 2009, 39(1): 26-28.
[11] GEING Kevin L, SAZHIN Serfiy V, JAMISON David K, et al. Investigation of path dependence in commercial Lithium-ion cells chosen for pulg-in hybrid vehicle duty cycle protocols[J]. Journal of Power Source, 2011, 196(7): 3385-3403.
[12] 李哲, 韩雪冰, 卢兰光, 等.动力型磷酸铁锂电池的温度特性[J]. 机械工程学报, 2011, 47(18): 115-120. LI Zhe, HAN Xue-bing, LU Lan-guang, et al. Temperature characteristics of power LiFePO4[J]. Journal of Mechanical Engineering, 2011, 47(18): 115-120.
[13] 董波. LiFePO4动力电池组放电末端SOC估计研究[D]. 合肥: 合肥工业大学机械工程学院, 2015: 24-61. DONG Bo. Study on the end of SOC estimation of LiFePO4 battery pack[D]. Hefei: Hefei University of Technology, School of Mechanical Engineering, 2015: 24-61.
[14] 闫怀义, 王迎进. Arrhenius经验公式的推导及Ea的本质[J]. 绍兴文理学院学报(自然科学版), 2010, 30(8): 12-14. YAN Huai-yi, WANG Ying-jin. The derivation of Arrhenius empirical formula and the essence of Ea [J]. Journal of Shaoxing University (Natural Science), 2010, 30(8): 12-14.
[15] 熊刚. 车用锂离子电池SOC和电池容量估算研究[D]. 长沙: 中南大学信息科学与工程学院, 2014: 20-43. XIONG Gang. Research on SOC and capacity estimation of Lithium-ion battery for electric vehicle [D]. Changsha: Central South University, School of Information Science and Engineering, 2014: 20-43.
[16] WING-Chi So, CHIK Tsc, YIM Shu Lee. Development of a fuzzy logic controller for DC/DC converters: design, computer, simulation, and experimental evaluation [J]. IEEE Transactions Power Electronics, 1996, 11(1): 24-31.
[17] 万健如, 宫成, 李昆鹏.电压型PWM整流器预测直接电容功率控制研究[J].电力系统保护与控制, 2013, 41(3): 96-101. WAN Jian-ru, GONG Cheng, LI Kun-peng. Research on predict direct capacitor power control of voltage source PWM rectifier[J]. Power System Protection and Control, 2013, 41(3): 96-101.
[18] 王立欣, 靳刚, 程树康. 混合动力车用PWM整流器控制方法的研究[J]. 电机与控制学报, 2005, 9(2): 199-202. WANG Li-xin, JIN Gang, CHENG Shu-kang. The study of PWM rectifier control method in hybrid electric vehicle [J]. Electric Machines and Control, 2005, 9(2): 199-202.
[1] 赵迪,陈果,陈小利,王熊锦. 轮式搜救机器人地形自适应机构设计及越障性能分析[J]. 工程设计学报, 2023, 30(5): 579-589.
[2] 王柏村,朱凯凌,鲍劲松,王峰,谢海波,杨华勇. 基于数字底座的涂装车身缓存区智能设计与调度优化[J]. 工程设计学报, 2023, 30(4): 399-408.
[3] 谢章伟,张兴波,徐哲,张羽,张丰云,王茜,王萍萍,孙树峰,王海涛,刘纪新,孙维丽,曹爱霞. 基于数字孪生的激光加工零件表面温度监控系统的构建[J]. 工程设计学报, 2023, 30(4): 409-418.
[4] 谢博伟,金莫辉,杨洲,段洁利,屈明宇,李锦辉. 3D打印TPU材料的力学性能及模型参数研究[J]. 工程设计学报, 2023, 30(4): 419-428.
[5] 张栋,杨培,黄哲轩,孙凌宇,张明路. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
[6] 李洋波,蔡改贫,阮辽. 对辊破碎机对钨矿石的层压破碎特性研究[J]. 工程设计学报, 2023, 30(2): 212-225.
[7] 徐诗洋,吴炳晖,纪冬梅,戴新宇. 电力隧道自动巡检机器人设计与运动仿真[J]. 工程设计学报, 2023, 30(1): 32-38.
[8] 李毅,陈国华,夏铭,李波. 电主轴冷却系统设计与仿真优化[J]. 工程设计学报, 2023, 30(1): 39-47.
[9] 芮宏斌,李路路,王天赐,段凯文. 两栖仿海龟机器人动力学建模与运动控制研究[J]. 工程设计学报, 2023, 30(1): 73-81.
[10] 涂文兵,袁晓文,杨锦雯,杨本梦. 不同元件故障状态下滚动轴承的动态特性研究[J]. 工程设计学报, 2023, 30(1): 82-92.
[11] 张旭,赖磊捷,朱利民. 超精密大行程麦克斯韦磁阻驱动器磁场建模与推力分析[J]. 工程设计学报, 2022, 29(6): 748-756.
[12] 李科军,陈淼林,王江银,姚学军,邓旻涯,高龙. 湿喷机液压制动系统制动阀性能研究[J]. 工程设计学报, 2022, 29(5): 579-586.
[13] 王晨,高波,杨旭. Stewart式六维力传感器轻量化设计[J]. 工程设计学报, 2022, 29(4): 419-429.
[14] 唐绍禹,吴杰,张辉,邓兵兵,黄禹铭,黄浩. 多极式磁流变离合器温度场仿真与实验研究[J]. 工程设计学报, 2022, 29(4): 484-492.
[15] 李科军,邓旻涯,黄文静,张宇,曾家旺,陈淼林. 混凝土湿喷机摆动系统工作特性研究[J]. 工程设计学报, 2022, 29(4): 519-526.