Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (5): 696-707    DOI: 10.3785/j.issn.1006-754X.2025.05.110
优化设计     
基于改进MOMVO算法的大荷载绝缘拉棒端头多目标优化
吴田1,2(),吴滨帆1,2(),邱中华3,彭勇4,朱祥4
1.三峡大学 电气与新能源学院,湖北 宜昌 443002
2.湖北省输电线路工程技术研究中心,湖北 宜昌 443002
3.国网四川省电力公司 超高压分公司,四川 成都 610041
4.中国电力科学研究院有限公司,湖北 武汉 430074
Multi-objective optimization of large-load insulating pull rod end based on improved MOMVO algorithm
Tian WU1,2(),Binfan WU1,2(),Zhonghua QIU3,Yong PENG4,Xiang ZHU4
1.College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
2.Hubei Transmission Line Engineering Technology Research Center, Yichang 443002, China
3.Extra High Voltage Company, State Grid Sichuan Electric Power Company, Chengdu 610041, China
4.China Electric Power Research Institute Limited, Wuhan 430074, China
 全文: PDF(5684 KB)   HTML
摘要:

针对特高压大荷载绝缘拉棒笨重、使用不便的问题,提出了一种绝缘拉棒端头多目标优化方法,以减小质量和提升绝缘性能及机械性能。首先,建立绝缘拉棒的有限元仿真模型,分析了其端头的电场分布和机械特性。然后,基于最优拉丁超立方抽样试验设计方法和径向基神经网络,构建了绝缘拉棒端头质量、最大应力、最大形变量和最大电场强度的代理模型。在此基础上,采用MOMVO(multi-objective multi-verse optimization,多目标多元宇宙优化)算法开展了多目标优化设计。在优化过程中,结合Sine-Tent-Cosine混沌映射策略、正余弦算法以及自适应参数更新策略,以提高MOMVO算法的多目标优化性能。最后,通过仿真和试验来检验多目标优化方法的可行性。结果表明:改进MOMVO算法的优化性能优于传统的NSGA-II(non-dominated sorting genetic algorithm-Ⅱ,二代非支配排序遗传算法)和MOEA/D(multi-objective evolutionary algorithm based on decomposition,基于分解的多目标进化算法)等。相较于优化前,优化后绝缘拉棒端头的最大应力、最大形变量和最大电场强度分别下降了17.03%、6.85%和5.58%,质量减小了10.66%。研究结果为绝缘工器具的综合优化设计提供了参考。

关键词: 大荷载绝缘拉棒有限元仿真代理模型多目标优化多目标多元宇宙优化算法    
Abstract:

Aiming at the problems of excessive weight and inconvenient use of large-load insulating pull rods for ultra-high voltage, a multi-objective optimization method for the end of insulating pull rods is proposed to reduce weight and enhance insulation performance and mechanical properties. Firstly, a finite element simulation model of the insulating pull rod was established, and the electric field distribution and mechanical characteristics of its end were analyzed. Then, based on the optimal Latin hypercube sampling experimental design method and the radial basis function neural network, the surrogate models for the mass, maximum stress, maximum deformation and maximum electric field intensity of the insulating pull rod end were constructed. On this basis, the MOMVO (multi-objective multi-verse optimization) algorithm was utilized to conduct multi-objective optimization design. During the optimization process, the multi-objective optimization performance of the MOMVO algorithm was improved by combining the Sine-Tent-Cosine chaotic mapping strategy, the sine cosine algorithm, and the adaptive parameter update strategy. Finally, the feasibility of the multi-objective optimization design method was verified through simulation and tests. The results indicated that the optimization performance of the improved MOMVO algorithm was superior to that of the traditional NSGA-II (non-dominated sorting genetic algorithm-II) and MOEA/D (multi-objective evolutionary algorithm based on decomposition). Compared with before optimization, the maximum stress, maximum deformation and maximum electric field intensity of the optimized insulating pull rod end decreased by 17.03%, 6.85% and 5.58%, respectively, while the mass decreased by 10.66%. The research results provide reference for the comprehensive optimization design of insulating tools and equipment.

Key words: large-load insulating pull rod    finite element simulation    surrogate model    multi-objective optimization    multi-objective multi-verse optimization algorithm
收稿日期: 2025-03-06 出版日期: 2025-10-31
CLC:  TM 84  
基金资助: 国家自然科学基金资助项目(51807110);国家电网公司科学技术项目(5500-202455164A-1-1-ZN)
通讯作者: 吴滨帆     E-mail: wutian_08@163.com;1044435906@qq.com
作者简介: 吴 田(1983—),男,高级工程师,博士,从事带电作业、高电压与绝缘技术等研究,E-mail: wutian_08@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴田
吴滨帆
邱中华
彭勇
朱祥

引用本文:

吴田,吴滨帆,邱中华,彭勇,朱祥. 基于改进MOMVO算法的大荷载绝缘拉棒端头多目标优化[J]. 工程设计学报, 2025, 32(5): 696-707.

Tian WU,Binfan WU,Zhonghua QIU,Yong PENG,Xiang ZHU. Multi-objective optimization of large-load insulating pull rod end based on improved MOMVO algorithm[J]. Chinese Journal of Engineering Design, 2025, 32(5): 696-707.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.110        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I5/696

图1  绝缘拉棒三维模型(第1节)
材料相对介电常数

密度/

(kg/m3)

杨氏模量/GPa泊松比
40Cr37 8502100.26
环氧树脂玻璃钢51 780350.30
泡沫管芯3450.0150.30
环氧树脂41 20010.38
60Si2Mn17 8502050.30
表1  绝缘拉棒各部件材料的相关参数
图2  绝缘拉棒关键部件的应力分布云图
图3  绝缘拉棒关键部件的形变量分布云图
图4  绝缘拉棒端头表面电场分布云图
图5  绝缘拉棒的轴向电场分布
图6  Sine-Tent-Cosine混沌映射序列数值分布图
图7  改进MOMVO算法的流程
图8  ZDT1基准函数下的测试结果
图9  DTLZ2基准函数下的测试结果
图10  绝缘拉棒端头的关键优化部位
优化变量初始值最小值最大值
端头销控直径a252050
端头销控位置b454055
端头厚度c252045
端头宽度d696588
表2  绝缘拉棒端头优化变量的取值范围 (mm)
序号

端头销控

直径/mm

端头销控

位置/mm

端头厚度/mm端头宽度/mm最大应力/MPa最大形变量/mm最大电场强度/(V/m)质量/kg
125.328 445.744 122.482 974.842 2560.412 60.074 973.262 8×1061.914 1
248.409 850.433 924.995 978.322 2641.152 70.103 393.072 5×1061.922 1
342.771 651.656 821.557 374.330 9688.298 80.100 513.469 2×1061.689 0
430.338 354.915 424.331 668.048 9828.042 90.072 244.097 1×1061.702 3
547.752 148.462 038.969 269.780 8949.587 70.109 393.123 6×1062.055 4
620.976 045.323 435.807 374.946 5445.974 30.047 172.991 2×1062.622 0
737.155 143.797 733.225 287.450 6404.636 60.060 082.903 6×1062.915 7
835.612 246.921 339.328 776.167 5409.427 90.052 302.769 8×1062.651 8
933.183 240.702 120.802 269.598 1851.693 20.107 323.373 5×1061.578 9
1021.563 154.180 539.683 487.257 6314.102 70.035 602.806 8×1063.475 0
10047.005 340.103 633.554 280.242 2402.401 30.096 272.850 6×1062.404 2
表3  绝缘拉棒端头优化试验设计方案及结果
图11  绝缘拉棒端头各优化目标的拟合曲线
图12  绝缘拉棒端头多目标优化的Pareto前沿
图13  绝缘拉棒端头多目标优化可行解的加权和数值
参数数值
端头销控直径27.311
端头销控位置52.855
端头厚度24.373
端头宽度66.195
表4  优化后绝缘拉棒端头的尺寸参数 (mm)
对比项最大应力/MPa最大形变量/mm最大电场强度/(V/m)质量/kg
预测值593.2350.0673.306×1061.630
仿真值589.3020.0683.336×1061.660
表5  优化后绝缘拉棒端头的性能参数与质量
图14  优化后绝缘拉棒端头的仿真结果
图15  绝缘拉棒性能试验布置
  
  
[1] 胡毅, 刘凯, 刘庭, 等. 超/特高压交直流输电线路带电作业[J]. 高电压技术, 2012, 38(8): 1809-1820.
HU Y, LIU K, LIU T, et al. Live working on EHV/UHV transmission lines[J]. High Voltage Engineering, 2012, 38(8): 1809-1820.
[2] 沈海江, 李文飞, 周行江, 等. 基于人机工程学的配网新型绝缘杆作业能力提升及工器具优化研究[J]. 电力设备管理, 2019(11): 99-100.
SHEN H J, LI W F, ZHOU X J, et al. Study of improvement of distribution network's operational capability and instrument based on ergonomics[J]. Electric Power Equipment Management, 2019(11): 99-100.
[3] 任承贤, 李稳, 邹德华, 等. 特高压带电作业中高强防雨绝缘拉棒设计[J]. 电力科学与技术学报, 2018, 33(1): 154-159.
REN C X, LI W, ZOU D H, et al. Design of high strength waterproof insulating pull rod for UHV live working[J]. Journal of Electric Power Science and Technology, 2018, 33(1): 154-159.
[4] FANG Y Q, YU G K, WANG B, et al. Study on electric field distribution and metal joints optimization of insulated rods for UHV live working[C]//2018 IEEE International Conference on High Voltage Engineering and Application. Athens, Sep. 10-13, 2018.
[5] 向文祥, 肖宾, 邬正荣. 特高压带电作业用软质绝缘拉棒的研制[J]. 中国电力, 2014, 47(5): 78-82.
XIANG W X, XIAO B, WU Z R. Flexible insulating rod for live line working with ultra-high voltage[J]. Electric Power, 2014, 47(5): 78-82.
[6] 索寅生. 超高压及特高压输电线路耐张塔型带电作业方法研究[D]. 北京: 华北电力大学, 2018.
SUO Y S. Research on live working method of tension tower type for EHV and UHV transmission lines[D]. Beijing: North China Electric Power University, 2018.
[7] 杜进桥, 张施令, 李乃一, 等. 特高压交流盆式绝缘子电场分布计算及屏蔽罩结构优化[J]. 高电压技术, 2013, 39(12): 3037-3043.
DU J Q, ZHANG S L, LI N Y, et al. Electric field distribution calculation and shielding electrode structure optimization of UHVAC basin-type insulator[J]. High Voltage Engineering, 2013, 39(12): 3037-3043.
[8] 张维凯, 孙强, 葛延鹏, 等. 基于NSGA-Ⅱ算法的GIS隔离开关盆式绝缘子电场分布和机械性能综合优化[J]. 高电压技术, 2025, 51(1): 336-345.
ZHANG W K, SUN Q, GE Y P, et al. Integrated optimization of electrical field distribution and mechanical performance of basin-type insulator in GIS disconnector based on NSGA-Ⅱ[J]. High Voltage Engineering, 2025, 51(1): 336-345.
[9] 刘丰硕, 汲胜昌, 党永亮, 等. 基于C-MOEA/D约束多目标优化算法的中频变压器绝缘结构全局优化设计方法[J]. 高电压技术, 2025, 51(2): 956-966.
LIU F S, JI S C, DANG Y L, et al. Global optimal design method for insulation structure of medium frequency transformer based on constrained multiobjective optimization algorithm C-MOEA/D[J]. High Voltage Engineering, 2025, 51(2): 956-966.
[10] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[11] ZHANG Q F, LI H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[12] MIRJALILI S, MIRJALILI S M, HATAMLOU A. Multi-verse optimizer: a nature-inspired algorithm for global optimization[J]. Neural Computing and Applications, 2016, 27(2): 495-513.
[13] MIRJALILI S, JANGIR P, MIRJALILI S Z, et al. Optimization of problems with multiple objectives using the multi-verse optimization algorithm[J]. Knowledge-Based Systems, 2017, 134: 50-71.
[14] KUMAR P, GARG S, SINGH A, et al. MVO-based 2-D path planning scheme for providing quality of service in UAV environment[J]. IEEE Internet of Things Journal, 2018, 5(3): 1698-1707.
[15] 乔井彦, 李金柱, 张羲黄, 等. 环氧树脂玻璃钢的动静态拉伸力学特性[J]. 高压物理学报, 2023, 37(3): 29-38.
QIAO J Y, LI J Z, ZHANG X H, et al. Dynamic and static tensile mechanical properties of glass fiber reinforced plastics[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 29-38.
[16] 胡毅. 带电作业工具及安全工具试验方法[M]. 北京: 中国电力出版社, 2003.
HU Y. Test methods for live working tools and safety tools[M]. Beijing: China Electric Power Press, 2003.
[17] 党园, 姜东飞, 谷倩倩, 等. 基于COMSOL热流固耦合的金属氧化物避雷器密封结构优化[J]. 高电压技术, 2020, 46(3): 852-859.
DANG Y, JIANG D F, GU Q Q, et al. Optimization of sealing structure of metal oxide arrester based on COMSOL thermal-fluid-solid coupling[J]. High Voltage Engineering, 2020, 46(3): 852-859.
[18] GHASSEMI M, FARZANEH M, CHISHOLM W A. Three-dimensional FEM electrical field calculation for FRP hot stick during EHV live-line work[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(6): 2531-2540.
[19] HUA Z Y, ZHOU Y C, HUANG H J. Cosine-transform-based chaotic system for image encryption[J]. Information Sciences, 2019, 480: 403-419.
[20] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133.
[21] RIZK-ALLAH R M, HASSANIEN A E. A comprehensive survey on the sine-cosine optimization algorithm[J]. Artificial Intelligence Review, 2023, 56(6): 4801-4858.
[22] 杨小猛, 李亮, 胡雄飞, 等. 基于改进正余弦算法的抱杆结构优化[J]. 应用数学和力学, 2024, 45(5): 529-538.
YANG X M, LI L, HU X F, et al. Structure optimization of holding poles based on the improved sine cosine algorithm[J]. Applied Mathematics and Mechanics, 2024, 45(5): 529-538.
[23] 杨景明, 穆晓伟, 车海军, 等. 多策略改进的多目标粒子群优化算法[J]. 控制与决策, 2017, 32(3): 435-442.
YANG J M, MU X W, CHE H J, et al. Improved multi-objective particle swarm optimization algorithm based on multiple strategies[J]. Control and Decision, 2017, 32(3): 435-442.
[24] 谢承旺, 张飞龙, 陆建波, 等. 一种多策略协同的多目标萤火虫算法[J]. 电子学报, 2019, 47(11): 2359-2367.
XIE C W, ZHANG F L, LU J B, et al. Multi-objective firefly algorithm based on multiply cooperative strategies[J]. Acta Electronica Sinica, 2019, 47(11): 2359-2367.
[25] 刘若辰, 李建霞, 刘静, 等. 动态多目标优化研究综述[J]. 计算机学报, 2020, 43(7): 1246-1278. doi:10.11897/SP.J.1016.2020.01246
LIU R C, LI J X, LIU J, et al. A survey on dynamic multi-objective optimization[J]. Chinese Journal of Computers, 2020, 43(7): 1246-1278.
doi: 10.11897/SP.J.1016.2020.01246
[26] MAHMOUDI H, ZIMMERMANN H. On optimal Latin hypercube design for yield analysis of analog circuits[C]//2015 Austrian Workshop on Microelectronics. Vienna,Sep. 28, 2015.
[27] 吕小青, 王旭, 徐连勇, 等. 基于径向基函数神经网络和NSGA-Ⅱ的气保焊工艺多目标优化[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(10): 1013-1018.
LÜ X Q, WANG X, XU L Y, et al. Multi-objective optimization of gas metal arc welding process parameters based on radial based function neural network and NSGA-Ⅱ[J]. Journal of Tianjin University (Science and Technology), 2020, 53(10): 1013-1018.
[28] 张聪, 燕翔, 杨平, 等. 大型船舶推进轴系校中-振动性能综合优化研究[J]. 华中科技大学学报(自然科学版), 2025, 53(7): 145-150.
ZHANG C, YAN X, YANG P, et al. Research on comprehensive optimization of alignment-vibration performance of large ship propulsion shafting[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2025, 53(7): 145-150.
[29] 丁璨, 王周琳, 袁召, 等. 基于多目标灰狼优化算法与RBF神经网络的真空灭弧室触头结构优化设计[J]. 高电压技术, 2024, 50(2): 543-550.
DING C, WANG Z L, YUAN Z, et al. Structural optimization design of vacuum interrupter contact based on multi-objective grey wolf optimization algorithm and RBF neural network[J]. High Voltage Engineering, 2024, 50(2): 543-550.
[30] 中国电力企业联合会. 带电作业用绝缘工具试验导则: [S]. 北京: 中国电力出版社, 2021.
China Electricity Council. Test guide of the insulating tools for live working: [S]. Beijing: China Electric Power Press, 2021.
[1] 张萌,朱禹清,杨培基,吴垚. 二维压电精密运动平台行程与频率的协同优化设计[J]. 工程设计学报, 2025, 32(5): 675-685.
[2] 刘东,胡国良,张佳伟,喻理梵. 变刚度变阻尼磁流变阻尼器的优化设计及性能分析[J]. 工程设计学报, 2025, 32(5): 686-695.
[3] 杜健,祝锡晶,李婧. 基于压电陶瓷驱动的二维精密定位平台设计及分析[J]. 工程设计学报, 2025, 32(2): 199-207.
[4] 徐美娟,汪启亮,洪永烽,龙益平,刘通,郭彬. 嵌套余弦函数型多轴柔性铰链的设计与分析[J]. 工程设计学报, 2025, 32(2): 252-261.
[5] 徐智皓,陆晓伟,谢雨欣,赖磊捷. 音圈电机驱动的三自由度大行程柔性偏摆台设计与分析[J]. 工程设计学报, 2025, 32(1): 82-91.
[6] 田立勇,张佳豪,于宁,于晓涵,张硕. 掘进机回转台疲劳寿命预测及影响因素研究[J]. 工程设计学报, 2025, 32(1): 92-101.
[7] 钟文义,梁世哲,张斌,唐鹏,刘可娜. 高空无人机桨发匹配设计及效率提升[J]. 工程设计学报, 2024, 31(6): 725-732.
[8] 李浩,王颖,马耀帅,孙春亚,黄荣杰,王昊琪,李琳利. 基于Kriging模型的大型立式磨机选粉机结构优化设计研究[J]. 工程设计学报, 2024, 31(6): 801-809.
[9] 杨培,张明路,孙凌宇. 爬壁机器人磁吸附模块设计分析与结构参数优化[J]. 工程设计学报, 2024, 31(5): 592-602.
[10] 方冰,胡国良,梅鑫,喻理梵. 全通道内置阀式磁流变阻尼器的设计及性能分析[J]. 工程设计学报, 2024, 31(5): 623-633.
[11] 谢海波,洪昊岑,王柏村,姜伟,杨华勇. 基于多目标遗传算法的斜盘式轴向柱塞泵低脉动结构优化设计[J]. 工程设计学报, 2024, 31(2): 160-167.
[12] 曹望城,韩佳轩,姚廷强. 基于参数化多体动力学模型的内齿式回转支承动态优化设计[J]. 工程设计学报, 2024, 31(2): 168-177.
[13] 谢章伟,张兴波,徐哲,张羽,张丰云,王茜,王萍萍,孙树峰,王海涛,刘纪新,孙维丽,曹爱霞. 基于数字孪生的激光加工零件表面温度监控系统的构建[J]. 工程设计学报, 2023, 30(4): 409-418.
[14] 谢博伟,金莫辉,杨洲,段洁利,屈明宇,李锦辉. 3D打印TPU材料的力学性能及模型参数研究[J]. 工程设计学报, 2023, 30(4): 419-428.
[15] 窦方健,邱清盈,管成,邵锦杰,吴海峰. 大转动惯量缠绕机加减速曲线优化设计[J]. 工程设计学报, 2023, 30(4): 503-511.