Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (5): 686-695    DOI: 10.3785/j.issn.1006-754X.2025.05.119
优化设计     
变刚度变阻尼磁流变阻尼器的优化设计及性能分析
刘东1(),胡国良1(),张佳伟1,2,喻理梵1
1.华东交通大学 机电与车辆工程学院,江西 南昌 330013
2.江西机电职业技术学院 机械工程学院,江西 南昌 330013
Optimization design and performance analysis of variable stiffness and variable damping magnetorheological damper
Dong LIU1(),Guoliang HU1(),Jiawei ZHANG1,2,Lifan YU1
1.School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
2.School of Mechanical Engineering, Jiangxi Vocational College of Mechanical & Electrical Technology, Nanchang 330013, China
 全文: PDF(3218 KB)   HTML
摘要:

针对传统液压阻尼器刚度系数、阻尼系数固定以及减振性能不佳等问题,设计了一种变刚度变阻尼磁流变阻尼器,通过将2个刚度系数不同的弹簧分别与磁流变阻尼器串、并联,以实现刚度和阻尼力的连续可调。首先,阐述了变刚度变阻尼磁流变阻尼器的工作原理,并建立了其阻尼力数学模型和动力学模型。随后,以刚度可调范围、输出阻尼力及其可调范围为目标,基于NSGA-Ⅲ(non-dominated sorting genetic algorithm-Ⅲ,非支配排序遗传算法-Ⅲ)对变刚度变阻尼磁流变阻尼器进行多目标优化设计,并对优化前后的磁流变阻尼器进行了仿真分析和性能对比。结果表明,当加载电流为2.0 A时,优化后的输出阻尼力可达1 188.2 N,比优化前提升了29.5%;阻尼力可调系数由4.1提高到4.6,刚度可调系数由3.2提高到5.3,比优化前分别提升了12.2%和65.6%;优化后磁流变阻尼器的刚度和阻尼性能均显著提升。所设计的变刚度变阻尼磁流变阻尼器结构紧凑且刚度系数和阻尼系数连续可调,可为车辆悬架或建筑隔振系统中磁流变阻尼器的设计与优化提供参考。

关键词: 磁流变阻尼器变刚度变阻尼多目标优化设计    
Abstract:

Aiming at the problems of fixed stiffness and damping coefficients and suboptimal vibration suppression performance of traditional hydraulic dampers, a variable stiffness and variable damping magnetorheological (MR) damper is designed. By integrating two springs with different stiffness coefficients in series and parallel with the MR damper, the continuous adjustable stiffness and damping force can be achieved. Firstly, the working principle of the variable stiffness and variable damping MR damper was expounded, and its damping force mathematical model and dynamics model were established. Subsequently, a multi-objective optimization design targeting adjustable stiffness range, output damping force, and its adjustable range was conducted using NSGA-Ⅲ (non-dominated sorting genetic algorithm-Ⅲ). Meanwhile, simulation analysis and performance comparison were conducted on the MR dampers before and after optimization. The results showed that when the applied current was 2.0 A, the optimized output damping force reached 1 188.2 N, which was 29.5% higher than that before optimization. The adjustable damping force coefficient was increased from 4.1 to 4.6, and the adjustable stiffness coefficient was increased from 3.2 to 5.3, which increased by 12.2% and 65.6% compared with before optimization, respectively. The stiffness and damping performance of the optimized MR damper was significantly improved. The designed variable stiffness and variable damping MR damper features a compact structure while maintaining continuously adjustable stiffness and damping coefficients, which can provide reference for the design and optimization of MR dampers in vehicle suspension or building vibration isolation system.

Key words: magnetorheological damper    variable stiffness    variable damping    multi-objective optimization design
收稿日期: 2025-03-09 出版日期: 2025-10-31
CLC:  TH 137.5  
基金资助: 国家自然科学基金资助项目(52475057);江西省国际科技合作重点项目(20232BBH80010);江西省自然科学基金重点项目(20252BAC250046);江西省研究生创新专项资金项目(YC2024-B203)
通讯作者: 胡国良     E-mail: 3048115907@qq.com;glhu@ecjtu.edu.cn
作者简介: 刘 东(2001—),男,硕士生,从事磁流变阻尼器结构优化设计研究,E-mail: 3048115907@qq.com,https://orcid.org/0009-0009-3948-7593
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘东
胡国良
张佳伟
喻理梵

引用本文:

刘东,胡国良,张佳伟,喻理梵. 变刚度变阻尼磁流变阻尼器的优化设计及性能分析[J]. 工程设计学报, 2025, 32(5): 686-695.

Dong LIU,Guoliang HU,Jiawei ZHANG,Lifan YU. Optimization design and performance analysis of variable stiffness and variable damping magnetorheological damper[J]. Chinese Journal of Engineering Design, 2025, 32(5): 686-695.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.119        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I5/686

图1  变刚度变阻尼磁流变阻尼器结构示意图
图2  磁流变阻尼器的动力学模型及其等效模型
图3  磁流变阻尼器的磁流耦合仿真模型
图4  活塞头轴对称截面的磁感应强度分布
图5  不同电流下阻尼间隙内磁感应强度的分布曲线
图6  不同电流下的输出阻尼力—位移曲线
图7  不同电流下的输出阻尼力—速度曲线
图8  等效阻尼系数随电流的变化曲线
图9  等效刚度系数随电流的变化曲线
图10  磁流变阻尼器的多目标优化设计流程
设计变量最小值最大值
缸体壁厚dh/mm48
绕线槽深度d/mm49
侧翼磁轭长度l1/mm812
阻尼间隙厚度g/mm12
弹簧1刚度系数K1/(N·mm-1)1020
弹簧2刚度系数K2/(N·mm-1)100200
表1  设计变量的取值范围
图11  NSGA-Ⅲ的基本寻优流程
代理模型RMSER2
αβFα/NαβFα
一阶响应面模型0.410.37199.30.810.800.89
二阶响应面模型0.120.1749.40.960.910.98
卷积神经网络模型0.170.30132.60.960.830.97
径向基神经网络模型0.150.2862.10.970.840.98
PSO-BP神经网络模型0.080.1551.70.990.960.99
表2  各代理模型的拟合指标
图12  磁流变阻尼器性能指标的Pareto最优解集
参数优化前优化后
缸体壁厚dh/mm7.04.1
绕线槽深度d/mm7.06.7
侧翼磁轭长度l1/mm9.08.8
阻尼间隙厚度g/mm1.51.7
弹簧1刚度系数K1/(N·mm-1)1510
弹簧2刚度系数K2/(N·mm-1)150130
表3  磁流变阻尼器关键参数的优化结果
图13  优化前后输出阻尼力随电流的变化曲线
图14  优化前后阻尼力可调系数随电流的变化曲线
图15  优化前后刚度可调系数随电流的变化曲线
  
  
[1] 杜修力, 王宇迪, 董慧慧, 等. 旋转式摩擦阻尼器滞回性能及其在多阶段抗震中的应用[J]. 中国公路学报, 2023, 36(7): 31-46.
DU X L, WANG Y D, DONG H H, et al. Hysteretic performance of the rotational friction damper and its application in multi-stage seismic design[J]. China Journal of Highway and Transport, 2023, 36(7): 31-46.
[2] 逄格钧, 毕凤荣, 马腾, 等. 工程车辆座椅悬架多维振动控制研究[J]. 武汉大学学报(工学版), 2024, 57(4): 477-485.
PANG G J, BI F R, MA T, et al. Multi-dimensional vibration control of engineering vehicle seat suspension[J]. Engineering Journal of Wuhan University, 2024, 57(4): 477-485.
[3] 黄伟, 徐建, 陆新征, 等. 动力装备和建筑楼盖的动力吸振研究[J]. 工程设计学报, 2021, 28(1): 25-32.
HUANG W, XU J, LU X Z, et al. Research on dynamic vibration absorption for power equipment and building floor[J]. Chinese Journal of Engineering Design, 2021, 28(1): 25-32.
[4] KHEDKAR Y M, BHAT S, ADARSHA H. A review of magnetorheological fluid damper technology and its applications[J]. International Review of Mechanical Engineering, 2019, 13(4): 256-264.
[5] 方冰, 胡国良, 梅鑫, 等. 全通道内置阀式磁流变阻尼器的设计及性能分析[J]. 工程设计学报, 2024, 31(5): 623-633.
FANG B, HU G L, MEI X, et al. Design and performance analysis of full fluid channel magnetorheological damper with built-in valve[J]. Chinese Journal of Engineering Design, 2024, 31(5): 623-633.
[6] 庄鹏, 杨佳宁, 张国伟. 利用负刚度磁流变阻尼器的单层球面网壳三维隔震研究[J]. 振动与冲击, 2024, 43(20): 172-182, 220.
ZHUANG P, YANG J N, ZHANG G W. Three-dimensional seismic isolation of single-layer spherical lattice shells using magnetorheological negative stiffness dampers[J]. Journal of Vibration and Shock, 2024, 43(20): 172-182, 220.
[7] LIU Y Q, MATSUHISA H, UTSUNO H. Semi-active vibration isolation system with variable stiffness and damping control[J]. Journal of Sound and Vibration, 2008, 313(1/2): 16-28.
[8] GREINER-PETTER C, TAN A S, SATTEL T. A semi-active magnetorheological fluid mechanism with variable stiffness and damping[J]. Smart Materials and Structures, 2014, 23(11): 115008.
[9] SUN S S, TANG X, YANG J, et al. A new generation of magnetorheological vehicle suspension system with tunable stiffness and damping characteristics[J]. IEEE Transactions on Industrial Informatics, 2019, 15(8): 4696-4708.
[10] DENG H X, DENG J L, YUE R, et al. Design and verification of a seat suspension with variable stiffness and damping[J]. Smart Materials and Structures, 2019, 28(6): 065015.
[11] MARATHE A P, KHOT S M, NAGLER J. Development of low-cost optimal magneto-rheological damper for automotive application[J]. Journal of Vibration Engineering & Technologies, 2022, 10(5): 1831-1850.
[12] 席兴盛, 胡国良, 喻理梵, 等. 振动能量采集型磁流变阻尼器优化设计及性能分析[J]. 噪声与振动控制, 2025, 45(1): 262-268.
XI X S, HU G L, YU L F, et al. Optimal design and performance analysis of vibration energy harvesting type magnetorheological dampers[J]. Noise and Vibration Control, 2025, 45(1): 262-268.
[13] OLIVIER M, SOHN J W. Design and geometric parameter optimization of hybrid magnetorheological fluid damper[J]. Journal of Mechanical Science and Technology, 2020, 34(7): 2953-2960.
[14] JIANG M, RUI X T, YANG F F, et al. Multi-objective optimization design for a magnetorheological damper[J]. Journal of Intelligent Material Systems and Structures, 2022, 33(1): 33-45.
[15] WANG Q Y, SHEN Y R, LI W H, et al. A smart structural optimization method of magnetorheological damper for ultra-precision machine tool[J]. Smart Materials and Structures, 2024, 33(5): 055026.
[16] HU G L, WU L F, DENG Y J, et al. Optimal design and performance analysis of magnetorheological damper based on multiphysics coupling model[J]. Journal of Magnetism and Magnetic Materials, 2022, 558: 169527.
[17] LIU G Y, GAO F, LIAO W H. Design and optimization of a magnetorheological damper based on B-spline curves[J]. Mechanical Systems and Signal Processing, 2022, 178: 109279.
[18] 胡国良, 杨肖, 朱文才, 等. 具有内外线圈结构的磁流变阀压降性能分析[J]. 南昌工程学院学报, 2023, 42(3): 1-7.
HU G L, YANG X, ZHU W C, et al. Analysis of pressure drop performance of magnetorheological valve with inner and outer excitation coils[J]. Journal of Nanchang Institute of Technology, 2023, 42(3): 1-7.
[19] 陈锐, 陈勇, 王宸, 等. 改进NSGA-Ⅲ的高维多目标柔性作业车间低碳调度方法研究[J]. 制造技术与机床, 2024(10): 165-173.
CHEN R, CHEN Y, WANG C, et al. Research on low-carbon scheduling method for high-dimensional multi-objective flexible job shop improved by NSGA-Ⅲ[J]. Manufacturing Technology & Machine Tool, 2024(10): 165-173.
[20] ZHOU S L, GU S W, WANG H W, et al. Mooring optimization for net-cage group system based on NSGA-III multi-objective genetic algorithm[J]. Ocean Engineering, 2025, 320: 120375.
[21] 唐林, 曾志, 曾宇, 等. 基于代理模型的风机主轴疲劳优化[J]. 中国工程机械学报, 2024, 22(6): 767-772.
TANG L, ZENG Z, ZENG Y, et al. Fatigue optimization of fan main shaft based on the surrogate model[J]. Chinese Journal of Construction Machinery, 2024, 22(6): 767-772.
[22] 高羡明, 张洋, 张功学, 等. 风电齿轮箱迷宫密封泄漏量分析及结构优化设计[J]. 机电工程, 2024, 41(4): 583-593.
GAO X M, ZHANG Y, ZHANG G X, et al. Leakage analysis and structural optimization design of labyrinth seal in wind power gearbox[J]. Journal of Mechanical & Electrical Engineering, 2024, 41(4): 583-593.
[23] 辛俊胜, 商跃进, 王红, 等. 基于最优拉丁超立方抽样的动车组轴箱弹簧稳健设计[J]. 铁道机车车辆, 2020, 40(5): 60-64.
XIN J S, SHANG Y J, WANG H, et al. Robust design of axle box spring for EMU based on optimal Latin hypercube sampling[J]. Railway Locomotive & Car, 2020, 40(5): 60-64.
[1] 方冰,胡国良,梅鑫,喻理梵. 全通道内置阀式磁流变阻尼器的设计及性能分析[J]. 工程设计学报, 2024, 31(5): 623-633.
[2] 席兴盛,胡国良,朱文才,喻理梵,李刚. 振动能量采集型磁流变阻尼器发电性能研究[J]. 工程设计学报, 2024, 31(2): 201-209.
[3] 金洪杨,岳龙旺,刘景达,郑卫卫,赵朝,徐嘉辉. 基于散粒体阻塞机理的变刚度柔性机械臂研究[J]. 工程设计学报, 2023, 30(4): 449-455.
[4] 段韦婕,秦慧斌,刘荣,李中一,白绍平. 可重构变刚度柔性驱动器的设计与性能分析[J]. 工程设计学报, 2023, 30(2): 262-270.
[5] 吴耀东, 李保坤, 韩迎鸽, 刘向阳, 刘坤. 新型微纳测头刚度模型及变刚度特性分析[J]. 工程设计学报, 2018, 25(6): 711-717.
[6] 程明, 陈照波, KIM Kyongsol, 焦映厚. 多级蜿蜒磁路式磁流变阻尼器的设计与分析[J]. 工程设计学报, 2017, 24(3): 350-358.
[7] 顾晓蕾, 唐志峰, 吕福在, 刘磊. 无源自适应磁流变阻尼器的磁场设计与研究[J]. 工程设计学报, 2011, 18(5): 386-390.
[8] 马履中, 徐华伟, 谢 俊, 朱 伟. 磁流变阻尼器在多维减振平台上的应用[J]. 工程设计学报, 2007, 14(1): 21-24.