Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (2): 201-209    DOI: 10.3785/j.issn.1006-754X.2024.03.139
机械优化设计     
振动能量采集型磁流变阻尼器发电性能研究
席兴盛(),胡国良(),朱文才,喻理梵,李刚
华东交通大学 载运工具与装备教育部重点实验室,江西 南昌 330013
Research on power generation performance of vibration energy collecting magnetorheological damper
Xingsheng XI(),Guoliang HU(),Wencai ZHU,Lifan YU,Gang LI
Key Laboratory of Conveyance and Equipment, Ministry of Education, East China Jiaotong University, Nanchang 330013, China
 全文: PDF(4264 KB)   HTML
摘要:

为了解决磁流变阻尼器对外部电源的过度依赖以及避免其断电失效的风险,设计了一种结构简单、可实现振动能量采集的磁流变阻尼器。该阻尼器由基于磁流变效应的减振装置和基于电磁感应原理的发电装置组成。首先,基于磁路欧姆定理建立了电磁感应发电装置的振动能量采集数学模型;其次,应用MATLAB软件进行发电装置发电性能分析,研究了装置发电性能与结构设计变量之间的关系;接着,采用COMSOl软件对2种不同永磁体组结构的发电装置进行了电磁仿真分析与对比,重点分析了发电装置永磁体组高度对发电性能的影响;最后,仿真分析了不同振动频率和幅值对装置发电性能的影响。结果表明:在一定范围内,感应线圈绕线槽高度值与发电性能指标值基本呈线性关系,永磁体组高度、导磁垫片高度与绕线筒径向厚度均存在最优值。无论在何种频率或幅值振动激励下,永磁体组高度为30 mm的发电装置单线圈感应电压的峰值比永磁体组高度为20 mm的大42.5%左右,输出功率峰值大22.3%左右。研究结果可为提高振动能量采集型磁流变阻尼器发电性能提供参考。

关键词: 磁流变阻尼器能量采集电磁感应发电性能    
Abstract:

A magnetorheological damper (MRD) with simple structure and capable of collecting vibration energy was designed to address the over-dependence of MR damper on external power sources and avoid the power failure risk. The damper consisted of a vibration reduction device based on magnetorheological effect and a power generation device based on electromagnetic induction principle. Firstly, the mathematical model of vibration energy harvesting of the power generation device was established based on the Ohm theorem of magnetic circuit. Secondly, MATLAB software was used to analyze the power generation performance. The relationship between the power generation performance and the structural design variables was studied. Then, electromagnetic simulation analysis and comparison were conducted on two power generation devices with different permanent magnet group structures using COMSOL software, with a focus on the impact of permanent magnet group height on power generation performance. Finally, the impact of different vibration frequencies and amplitudes on the power generation performance of the device was simulated and analyzed. The results showed that within a certain range, the height of winding slot of induction coil was basically linear with the power generation performance index, and there were optimal values for the height of permanent magnet group, the height of magnetic gasket and radial thickness of winding cylinder. Regardless of the frequency or amplitude of vibration excitation. The peak induced voltage of a single coil of generation device with a permanent magnet group height of 30 mm was about 42.5% larger than that with a permanent magnet group height of 20 mm, and the peak output power was about 22.3% higher. The research results can provide reference for improving the power generation performance of vibration energy harvesting MRD.

Key words: magnetorheological damper    energy harvesting    electromagnetic induction    power generation performance
收稿日期: 2023-03-27 出版日期: 2024-04-26
CLC:  TH 703.62  
基金资助: 国家自然科学基金资助项目(52165004);江西省自然科学基金重点项目(20212ACB204002);江西省重点研发计划重点项目(20212BBE51009)
通讯作者: 胡国良     E-mail: xingsheng_xi@163.com;glhu@ecjtu.edu.cn
作者简介: 席兴盛(1996—),男,江西高安人,硕士生,从事振动能量采集型磁流变阻尼器研究,E-mail: xingsheng_xi@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
席兴盛
胡国良
朱文才
喻理梵
李刚

引用本文:

席兴盛,胡国良,朱文才,喻理梵,李刚. 振动能量采集型磁流变阻尼器发电性能研究[J]. 工程设计学报, 2024, 31(2): 201-209.

Xingsheng XI,Guoliang HU,Wencai ZHU,Lifan YU,Gang LI. Research on power generation performance of vibration energy collecting magnetorheological damper[J]. Chinese Journal of Engineering Design, 2024, 31(2): 201-209.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.139        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I2/201

图1  振动能量采集型MRD结构的示意图1—上端盖;2—上活塞杆;3—导磁套筒;4—绕线筒;5—上缸盖;6—缸体;7—活塞头;8—励磁线圈;9—永磁体组;10—感应线圈;11—导磁垫片;12—下缸盖;13—下活塞杆;14—端罩;15—下端盖;16—支撑杆。
图2  MRD电磁感应发电装置磁路的示意图
图3  比较因数 Q 随绕线槽高度 wc 的变化关系
图4  比较因数 Q 随绕线筒径向厚度 lt 的变化关系
图5  比较因数 Q 随永磁体组高度 τm 和导磁垫片高度 τc 的变化关系
图6  比较因数 Q 随绕线筒径向厚度 lt 和导磁垫片高度 τc 的变化关系
图7  两种不同发电装置磁流变阻尼器的结构示意图
图8  发电装置单个线圈结构的网格划分图
图9  发电装置在初始位置时的磁感应强度分布云图
图10  发电装置单线圈感应电压随时间的变化曲线
图11  发电装置感应线圈的磁感应强度
图12  发电装置单线圈输出功率随时间的变化曲线
图13  振幅为5 mm、不同频率下发电装置单线圈感应电压随时间的变化曲线
图14  振幅为10 mm、不同频率下装置单线圈感应电压随时间的变化曲线
图15  振幅为15 mm、不同频率下装置单线圈感应电压随时间的变化曲线
18 余龙. 磁流变阻尼器在汽车悬架减振系统中的应用[J].汽车实用技术, 2021, 46(17): 198-200. doi:10.16638/j.cnki.1671-7988.2021.017.056
YU L. Application of magnetorheological dampers in automotive suspension damping systems [J]. Practical Automotive Technology, 2021, 46(17): 198-200.
doi: 10.16638/j.cnki.1671-7988.2021.017.056
19 EBRAHIMI B, KHAMESEE M B, GOLNARAGHI M F. Feasibility study of an electromagnetic shock absorber with position sensing capability [C]// 34th Annual Conference of IEEE Industrial Electronics. IEEE, 2008: 2988-2991.
20 BOGDAN S. Energy-harvesting linear MR damper: prototyping and testing [J]. Smart Materials and Structures, 2014, 23(3): 035021.
1 齐浩楠, 胡国良, 喻理梵. 混合流动式磁流变阻尼器设计及阻尼性能分析[J]. 机械设计, 2022, 39(2): 58-65.
QI H N, HU G L, YU L F. Design and damping perfor mance analysis of hybrid flow magnetorheological dampers [J]. Machine Design, 2022, 39(2): 58-65.
2 程明, 陈照波, KIM K, 等. 多级蜿蜒磁路式磁流变阻尼器的设计与分析[J]. 工程设计学报, 2017, 24(3): 350-358. doi:10.3785/j.issn.1006-754X.2017.03.016
CHENG M, CHEN Z B, KIM K, et al. Design and analysis of a multi-level winding magnetic circuit type magnetorheological damper [J]. Journal of Engineering Design, 2017, 24(3): 350-358.
doi: 10.3785/j.issn.1006-754X.2017.03.016
3 胡国良, 易锋, 刘浩, 等. 磁流变阻尼器结构设计与能量采集效能仿真与试验[J]. 农业机械学报, 2020, 51(8): 391-399. doi:10.6041/j.issn.1000-1298.2020.08.044
HU G L, YI F, LIU H, et al. Structural design and energy harvesting efficiency simulation and experiment of magnetorheological dampers[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8): 391-399.
doi: 10.6041/j.issn.1000-1298.2020.08.044
4 WANG R C, JIANG Y, DING R K, et al. Design and experimental verification of self-powered electromagnetic vibration suppression and absorption system for in-wheel motor electric vehicles [J]. Journal of Vibration and Control, 2022, 28(19-20): 1-12.
5 LI Z, ZUO L, LUHRS G, et al. Electromagnetic energy-harvesting shock absorbers: design, modeling, and road tests [J]. IEEE Transactions on Vehicular Technology, 2013, 62(3): 1065-1074.
6 CHEN C, LIAO W H. A self-sensing magnetorheological damper with power generation [J]. Smart Materials and Structures, 2012, 21(2): 025014.
7 CHEN C, LIAO W H. Feasibility study of self-powered magnetorheological damper systems [C]// Active and Passive Smart Structures and Integrated Systems. SPIE, 2012, 8341: 255-265.
8 BUI Q D, NGUYEN Q H, NGUYEN T T, et al. Development of a magnetorheological damper with self-powered ability for washing machines [J]. Applied Sciences, 2020, 10(12): 4099.
9 CHOI Y T, WERELEY N M. Self-powered magnetorheological dampers [J]. Journal of Vibration and Acoustics, 2009, 131(4): 1-5.
10 胡国良,刘丰硕,卢昀. 功能集成型磁流变阻尼器设计与试验[J]. 农业机械学报, 2016, 47(11): 384-390. doi:10.6041/j.issn.1000-1298.2016.11.052
HU G L, LIU F S LU J. Design and testing of a functionally integrated magnetorheological damper [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 384-390.
doi: 10.6041/j.issn.1000-1298.2016.11.052
11 董小闵,彭少俊,于建强. 自供电式汽车磁流变减振器特性研究[J]. 机械工程学报, 2016, 52(20): 83-91. doi:10.3901/JME.2016.20.083
DONG X M, PENG S J, YU J Q. Research on the characteristics of self powered automotive magnetorheological shock absorbers [J]. Journal of Mechanical Engineering, 2016, 52(20): 83-91.
doi: 10.3901/JME.2016.20.083
12 LI L, HU G, YU L, et al. Development and performance analysis of a new self-powered magne-torheological damper with energy harvesting capability [J]. Energies, 2021, 14(19): 6166.
13 HUANG J, WANG E, ZHANG H. Analysis and research on the comprehensive performance of vehicle magnetorheological regenerative suspension[J]. Vehicles, 2020, 2(4): 576-588.
14 陈淑梅,汤鸿剑,黄惠,等. 剪切挤压混合模式磁流变阻尼器的性能[J]. 华南理工大学学报(自然科学版), 2021, 49(2): 140-150. doi:10.12141/j.issn.1000-565X.200620
CHEN S M, TANG H J, HUAMG H, et al. Performance of shear compression hybrid mode magnetorheological dampers[J]. Journal of South China University of Technology (Science Edition), 2021, 49(2): 140-150.
doi: 10.12141/j.issn.1000-565X.200620
15 LEE K H, KIM C, LEE C H. Study on design of torque bush of vehicle for semi-active roll stiffness control using magnetic material[J]. Transactions of Korean Society of Automotive Engineers, 2020, 28(6): 375-380.
16 ABDALAZIZ M, VATANDOOST H, SEDAGHATI R, et al. Design and experimental characterization of a bypass magnetorheological damper featuring variable stiffness and damping[J]. Smart Materials and Structures, 2023, 32(3): 035011.
17 刘志恩, 安宏杰, 宋伟志, 等. 基于新型磁流变阻尼器的汽车防侧翻研究[J]. 汽车技术, 2022(4): 44-49.
LIU Z E, AN H J, SONG W Z, et al. Research on automotive roll over prevention based on new magnetorheological dampers [J]. Automotive Technology, 2022(4): 44-49.
[1] 程明, 陈照波, KIM Kyongsol, 焦映厚. 多级蜿蜒磁路式磁流变阻尼器的设计与分析[J]. 工程设计学报, 2017, 24(3): 350-358.
[2] 顾晓蕾, 唐志峰, 吕福在, 刘磊. 无源自适应磁流变阻尼器的磁场设计与研究[J]. 工程设计学报, 2011, 18(5): 386-390.
[3] 马履中, 徐华伟, 谢 俊, 朱 伟. 磁流变阻尼器在多维减振平台上的应用[J]. 工程设计学报, 2007, 14(1): 21-24.