Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (1): 92-101    DOI: 10.3785/j.issn.1006-754X.2025.04.118
可靠性与保质设计     
掘进机回转台疲劳寿命预测及影响因素研究
田立勇(),张佳豪(),于宁,于晓涵,张硕
辽宁工程技术大学 机械工程学院,辽宁 阜新 123000
Study on fatigue life prediction and influencing factors of roadheader rotary platform
Liyong TIAN(),Jiahao ZHANG(),Ning YU,Xiaohan YU,Shuo ZHANG
School of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China
 全文: PDF(5358 KB)   HTML
摘要:

掘进机回转台在截割煤岩时承受偏载荷及强冲击作用,其性能影响掘进机的工作效率及安全性。为探究掘进机回转台疲劳寿命的影响因素及最佳服役参数,提出了一种基于Kriging代理模型和DEM-MFBD(discrete element model-multi flexible body dynamics,离散单元法-多柔性体动力学)双向耦合技术的回转台疲劳寿命预测方法。首先,建立了掘进机截割部与回转台的空间受力模型,明确了截割部与回转台的受力规律。然后,联合RecurDyn与EDEM软件对回转台进行双向刚柔耦合动力学仿真分析,获得了回转台在工作状态下的应力分布。最后,利用拉丁超立方抽样法选取15组掘进机服役参数作为输入,以回转台疲劳寿命为响应,建立了对应的Kriging代理模型,并利用粒子群优化算法对代理模型进行寻优,得到了回转台在最佳服役参数下的疲劳寿命。结果表明,当掘进机的截割头转速为54 r/min、回转台横摆速度为1.003 m/min、截割臂垂直摆角为7°时,回转台的疲劳寿命最长。结合DEM-MFBD双向耦合技术、Kriging代理模型与粒子群优化算法来探究掘进机的最佳服役参数,可为回转类部件的优化设计提供新思路。

关键词: 回转台DEM-MFBD双向耦合技术疲劳寿命预测Kriging代理模型粒子群优化算法    
Abstract:

The rotary platform of the roadheader bears eccentric load and strong impact when cutting coal and rock, and its performance affects the working efficiency and safety of the roadheader. To explore the influencing factors of fatigue life of the rotary platform and identify the optimal service parameters of the roadheader, a fatigue life prediction method for the rotary platform based on the Kriging surrogate model and DEM-MFBD (discrete element method-multi flexible body dynamics) bidirectional coupling technology was proposed. Firstly, the spatial force models for the cutting part and rotary platform of the roadheader were established, and the force law of the cutting part and rotary platform was clarified. Then, the bidirectional rigid-flexible coupling dynamics simulation analysis for the rotary platform was conducted by combining RecurDyn and EDEM software to obtain the stress distribution of the rotary platform under the working condition. Finally, 15 groups of service parameters of roadheader were selected by Latin hypercube sampling method as input, and the corresponding Kriging surrogate model was established with the fatigue life of the rotary platform as the response. The surrogate model was optimized by particle swarm optimization algorithm to obtain the fatigue life of the rotary platform under the optimal service parameters. The results showed that the fatigue life of the rotary platform was maximum when the cutting head speed of the roadheader was 54 r/min, the lateral swing speed of rotary platform was 1.003 m/min, and the vertical swing angle of cutting arm was 7°. Combining DEM-MFBD bidirectional coupling technology, Kriging surrogate model and particle swarm optimization algorithm to explore the optimal service parameters of the roadheader can provide new ideas for the optimization design of rotary components.

Key words: rotary platform    DEM-MFBD bidirectional coupling technology    fatigue life prediction    Kriging surrogate model    particle swarm optimization algorithm
收稿日期: 2024-02-29 出版日期: 2025-03-04
CLC:  TD 421  
基金资助: 国家自然科学基金面上项目(52174143)
通讯作者: 张佳豪     E-mail: tianliyong2003@163.com;1452565886@qq.com
作者简介: 田立勇(1979—),男,副教授,博士生导师,博士,从事机电一体化研究,E-mail: tianliyong2003@163.com,https://orcid.org/0000-0002-8690-5550
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
田立勇
张佳豪
于宁
于晓涵
张硕

引用本文:

田立勇,张佳豪,于宁,于晓涵,张硕. 掘进机回转台疲劳寿命预测及影响因素研究[J]. 工程设计学报, 2025, 32(1): 92-101.

Liyong TIAN,Jiahao ZHANG,Ning YU,Xiaohan YU,Shuo ZHANG. Study on fatigue life prediction and influencing factors of roadheader rotary platform[J]. Chinese Journal of Engineering Design, 2025, 32(1): 92-101.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.118        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I1/92

图1  掘进机截割部与回转台的结构
图2  掘进机截割部与回转台的力学模型
图3  截割部力学模型
图4  回转台力学模型
图5  不同服役状态下的掘进机刚柔耦合模型
参数数值
泊松比0.21
剪切模量/MPa18 300
单位面积法向刚度/(N/m3)1.067 8×109
单位面积切向刚度/(N/m3)8.542 5×108
最大法向应力/Pa2.817 9×107
最大切向应力/Pa1.259 2×107
表1  煤岩试样参数
图6  回转台的最大等效应力云图
图7  回转台受力最大节点处的等效应力变化曲线
材料参数数值
密度/(kg/m3)7 850
屈服强度/MPa235
拉伸极限/MPa375
弹性模量/GPa206
泊松比0.3
表2  Q235钢材料参数
图8  Q235钢的 S — N 曲线
图9  工况A下回转台的疲劳寿命云图
设计变量取值范围
截割头转速n/(r/min)[35, 55]
回转台横摆速度v/(m/min)[1.0, 1.5]
截割臂垂直摆角ω/(°)[18, 42]
表3  设计变量的取值范围
图10  掘进机服役参数的拉丁超立方抽样结果
组别服役参数最大应力循环数N/次
n/(r/min)v/(m/min)ω/(°)
154.41.4841.31.50×105
247.41.450.59.54×104
340.61.48-17.52.17×104
443.71.3220.61.20×106
543.91.179.04.58×106
651.81.4731.92.93×105
754.11.367.03.90×106
848.01.21-3.44.60×106
950.81.42-7.92.19×106
1036.21.3637.91.28×105
1152.61.4124.15.63×105
1242.51.3316.77.29×105
1336.61.26-13.92.44×106
1440.21.0029.94.88×106
1542.61.21-2.93.39×106
表4  掘进机服役参数抽样方案及回转台疲劳寿命仿真结果
精度指标数值
相关系数0.955 8
可决系数0.913 6
校正可决系数0.894 2
表5  Kriging代理模型的拟合精度
样本点最大应力循环数N/次相对误差/%
仿真值预测值
1391 810432 2129.3
2479 110510 9346.2
3708 921773 2128.3
41 090 605992 2869.9
51 690 8771 897 63010.9
62 527 5912 313 5609.2
74 321 3003 993 3408.2
表6  回转台疲劳寿命的仿真值与预测值对比
图11  掘进机服役参数对回转台疲劳寿命影响的响应面
图12  基于PSO算法的掘进机服役参数寻优流程
图13  基于PSO算法的回转台疲劳寿命寻优迭代曲线
1 董磊, 任家骏, 王喜胜, 等. 悬臂式掘进机回转机构的建模与动力学仿真[J]. 煤炭科学技术, 2009, 37(6): 83-85.
DONG L, REN J J, WANG X S, et al. Model establishing and dynamics simulation of rotary mechanism for boom type roadheader[J]. Coal Science and Technology, 2009, 37(6): 83-85.
2 赵丽娟, 刘旭南, 曹拓. 纵轴式掘进机横摆运动参数的优化设计[J]. 煤炭学报, 2012, 37(12): 2112-2117.
ZHAO L J, LIU X N, CAO T. Horizontal swing movement parameters optimization design of longitudinal road header[J]. Journal of China Coal Society, 2012, 37(12): 2112-2117.
3 赵丽娟, 李明昊, 张品好. 掘进机回转台动态可靠性与疲劳寿命分析[J]. 机械强度, 2017, 39(4): 887-892.
ZHAO L J, LI M H, ZHANG P H. Dynamic reliability and fatigue life analysis of the roadheader's gyration platform[J]. Journal of Mechanical Strength, 2017, 39(4): 887-892.
4 张路伟. 基于整机振动的掘进机回转台疲劳寿命分析及优化设计[D]. 太原: 太原理工大学, 2021: 5-6.
ZHANG L W. Fatigue life analysis and optimization design of roadheader turret based on whole machine vibration[D]. Taiyuan: Taiyuan University of Technology, 2021: 5-6.
5 王岩. 掘进机截割过程建模与仿真研究[D]. 阜新: 辽宁工程技术大学, 2021: 4-5.
WANG Y. Research on modeling and simulation of the process of the roadheader cutting[D]. Fuxin: Liaoning Technical University, 2021: 4-5.
6 周开平. 煤矿井下悬臂式掘进机回转机构优化设计[J]. 煤炭技术, 2021, 40(9): 177-180.
ZHOU K P. Optimization design of slewing mechanism of cantilever roadheader in coal mine[J]. Coal Technology, 2021, 40(9): 177-180.
7 刘德. EBZ-300型纵轴式掘进机回转机构优化设计的研究[D]. 太原: 太原理工大学, 2018: 4-5. doi:10.35530/it.068.04.1290
LIU D. Study on optimal design of rotary mechanism of EBZ-300 longitudinal roadheader[D]. Taiyuan: Taiyuan University of Technology, 2018: 4-5.
doi: 10.35530/it.068.04.1290
8 商跃进. 悬臂式掘进机回转机构虚拟样机优化设计[J]. 中国工程机械学报, 2015, 13(2): 135-138.
SHANG Y J. Virtual prototyping and optimization design on rotary mechanism of boom-type roadheaders[J]. Chinese Journal of Construction Machinery, 2015, 13(2): 135-138.
9 李旭, 顾永正, 吴淼. 基于微分几何的掘进机工作机构运动学分析[J]. 煤炭学报, 2016, 41(12): 3158-3166.
LI X, GU Y Z, WU M. Kinematics analysis of roadheader's working mechanism based on differential geometry[J]. Journal of China Coal Society, 2016, 41(12): 3158-3166.
10 张振山, 王建军, 武秋俊, 等. 基于ANSYS的矿用掘进机回转台振动疲劳分析方法[J]. 煤炭技术, 2023, 42(6): 248-250.
ZHANG Z S, WANG J J, WU Q J, et al. Vibration fatigue analysis method of rotary table of mining tunneling machine based on ANSYS[J]. Coal Technology, 2023, 42(6): 248-250.
11 金秀宇, 胡建华, 郭玲. 掘进机回转台可靠性分析研究[J]. 煤矿机械, 2022, 43(2): 41-43.
JIN X Y, HU J H, GUO L. Study on reliability analysis of rotary platform of roadheader[J]. Coal Mine Machinery, 2022, 43(2): 41-43.
12 刘丽娟. EBZ-132型纵轴式掘进机虚拟样机建模与动力学分析[D]. 武汉: 中国地质大学, 2013: 44-45. doi:10.4028/www.scientific.net/amm.278-280.295
LIU L J. Virtual prototype modeling and dynamics analysis of EBZ-132-type longitudinal roadheader[D]. Wuhan: China University of Geosciences, 2013: 44-45.
doi: 10.4028/www.scientific.net/amm.278-280.295
13 田立勇. 基于多源数据融合的采煤机截割载荷识别与预测研究[D]. 阜新: 辽宁工程技术大学, 2020: 12-21.
TIAN L Y. Research on identification and prediction of shearer cutting load based on multi-source data fusion[D]. Fuxin: Liaoning Technical University, 2020: 12-21.
14 曹均. 悬臂式掘进机截割部虚拟样机建模及仿真[D]. 太原: 太原理工大学, 2014: 26-28.
CAO J. Virtual prototype modeling and simulation of roadheader cutting unit[D]. Taiyuan: Taiyuan University of Technology, 2014: 26-28.
15 付万里. 基于改进试验选点的直接GEK可靠度代理模型方法[D]. 哈尔滨: 哈尔滨工业大学, 2018: 9-10.
FU W L. The direct GEK surrogate model method based on improved experimental selection[D]. Harbin: Harbin Institute of Technology, 2018: 9-10.
16 卢高明, 李元辉, 张希巍, 等. 周期荷载作用下黄砂岩疲劳破坏变形特性试验研究[J]. 岩土工程学报, 2015, 37(10): 1886-1892.
LU G M, LI Y H, ZHANG X W, et al. Fatigue deformation characteristics of yellow sandstone under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1886-1892.
17 胡楷, 马军, 王晓东, 等. 基于Kriging组合模型和NSGA-Ⅲ算法的转子裂纹参数识别[J]. 动力工程学报, 2023, 43(11): 1506-1514.
HU K, MA J, WANG X D, et al. Rotor crack parameter identification based on Kriging combined model and NSGA-Ⅲ algorithm[J]. Journal of Chinese Society of Power Engineering, 2023, 43(11): 1506-1514.
18 姜楠. 高速飞行器概念设计软件平台研制[D]. 南京: 南京航空航天大学, 2020: 29-30.
JIANG N. Development of high-speed aircraft conceptual design software platform[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 29-30.
19 蒋先酒. 基于Kriging的车载身管武器高低机末级齿轮可靠性研究[D]. 沈阳: 沈阳理工大学, 2023: 14-17.
JIANG X J. Research on reliability of final gear of elevating machine of vehicle barrel weapon based on Kriging[D]. Shenyang: Shenyang Ligong University, 2023: 14-17.
20 刘英杰. 基于数字型超构波导的硅基多维复用器件研究[D]. 哈尔滨: 哈尔滨工业大学, 2022: 35-36.
LIU Y J. Silicon-based multiplexing devices with digital meta-structure[D]. Harbin: Harbin Institute of Technology, 2022: 35-36.
[1] 李浩,王颖,马耀帅,孙春亚,黄荣杰,王昊琪,李琳利. 基于Kriging模型的大型立式磨机选粉机结构优化设计研究[J]. 工程设计学报, 2024, 31(6): 801-809.
[2] 吴勃夫,吴姚烨,贝璟,吴宗扬,孙亮. 铸铝一体化车门的多目标可靠性优化设计[J]. 工程设计学报, 2024, 31(2): 188-200.
[3] 梁栋, 梁正宇, 畅博彦, 齐杨, 徐振宇. 多臂机提综臂辅助旋铆并联机器人优化设计[J]. 工程设计学报, 2022, 29(1): 28-40.
[4] 孙月海, 唐二星. 弧齿锥齿轮基本参数优化设计[J]. 工程设计学报, 2020, 27(5): 616-624.
[5] 王艾伦, 刘乐, 刘庆亚. 基于Kriging代理模型的拉杆组合转子强度可靠性研究[J]. 工程设计学报, 2019, 26(4): 433-440.
[6] 胡均平, 彭要明. 基于粒子群优化算法的螺旋钻机变幅机构铰点位置优化[J]. 工程设计学报, 2018, 25(5): 561-566,596.
[7] 马天政, 吕昊, 张义民. 一种基于Bayes方法的随机模型修正方法[J]. 工程设计学报, 2016, 23(3): 206-211.
[8] 申杰斌, 唐东林. 应力场强法中场径参数的研究[J]. 工程设计学报, 2016, 23(1): 22-27.
[9] 刘 喆,陶凤和,贾长治. 履带车辆传动轴疲劳寿命预测与结构改进[J]. 工程设计学报, 2015, 22(5): 431-437.
[10] 王文祝, 金丰, 周海波. 磁悬浮运动中电磁铁磁滞特性的非线性影响研究[J]. 工程设计学报, 2013, 20(3): 212-217.
[11] 钱学毅, 吴 双. 基于弹流润滑理论的非对称齿轮胶合强度多目标优化[J]. 工程设计学报, 2010, 17(6): 426-429.