Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (6): 725-732    DOI: 10.3785/j.issn.1006-754X.2024.03.402
【特约专栏】“双碳”背景下新型能源装备设计、制造、运维关键技术及其应用     
高空无人机桨发匹配设计及效率提升
钟文义,梁世哲,张斌,唐鹏,刘可娜
航空工业成都飞机工业(集团)有限责任公司,四川 成都 610031
Propeller-motor matching design and efficiency improvement for high-altitude unmanned aerial vehicle
Wenyi ZHONG,Shizhe LIANG,Bin ZHANG,Peng TANG,Kena LIU
AVIC Chengdu Aircraft Industrial (group) Co. , Ltd. , Chengdu 610031, China
 全文: PDF(2310 KB)   HTML
摘要:

电推进系统的桨发匹配设计是高空无人机实现长航时飞行的关键环节。根据高空无人机全剖面的动力需求,分别采用功率损失法和单点法开展了电推进系统电动机与螺旋桨的总体参数匹配设计,并通过地面静态试验对电推进系统的拉力、功率特性进行了测试。同时,在确定电动机选型的基础上,基于BP(back propagation,反向传播)神经网络建立代理模型,以开展电推进系统桨发匹配设计及效率提升工作。试验结果表明,电推进系统的实测拉力与计算拉力相吻合,说明所采用的电动机、螺旋桨总体参数匹配设计方法具有较高的精度。以仰角为5°的爬升剖面为例,经代理模型优化匹配后得到的新螺旋桨的效率约提升了0.1,节能效果显著。相关代理模型可为无人机电推进系统方案设计及后期工程使用阶段的桨发匹配优化设计、动力特性及经济性提升提供有力工具。

关键词: 高空无人机电推进系统桨发匹配代理模型效率提升地面静态试验    
Abstract:

The propeller-motor matching design of electric propulsion system is a key link for high-altitude unmanned aerial vehicle (UAV) to achieve long-endurance flight. According to the full-profile power requirements of the high-altitude UAV, the overall parameter matching design for the motor and propeller of the electric propulsion system was carried out by using the power loss method and the single-point method, respectively, and the tensile force and power characteristics of the electric propulsion system were measured through ground static test. At the same time, the surrogate model based on BP (back propagation) neural network was established on the basis of the confirmed motor selection, in order to carry out the propeller-motor matching design and efficiency improvement for the electric propulsion system. The test results showed that the measured tensile force was consistent with the calculated tensile force, which indicated that the adopted overall parameter matching design method for the motor and propeller had high accuracy. Taking the climb profile with elevation angle of 5° as an example, the efficiency of the new propeller obtained by optimized matching through the surrogate model was improved by about 0.1, and the energy saving effect was remarkable. The relevant surrogate model can provide a powerful tool for the propeller-motor matching and optimization design of the UAV electric propulsion system in the scheme design and later engineering use stage, as well as the improvement of dynamics characteristics and economy.

Key words: high-altitude unmanned aerial vehicle    electric propulsion system    propeller-motor matching    surrogate model    efficiency improvement    ground static test
收稿日期: 2023-11-15 出版日期: 2024-12-31
CLC:  V 279  
通讯作者: 唐鹏   
作者简介: 钟文义(1996—),男,助理工程师,硕士
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
钟文义
梁世哲
张斌
唐鹏
刘可娜

引用本文:

钟文义,梁世哲,张斌,唐鹏,刘可娜. 高空无人机桨发匹配设计及效率提升[J]. 工程设计学报, 2024, 31(6): 725-732.

Wenyi ZHONG,Shizhe LIANG,Bin ZHANG,Peng TANG,Kena LIU. Propeller-motor matching design and efficiency improvement for high-altitude unmanned aerial vehicle[J]. Chinese Journal of Engineering Design, 2024, 31(6): 725-732.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.402        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I6/725

图1  无人机的需用推力与飞行高度、爬升角的关系(针对单套推进装置)
图2  永磁同步电动机的功率分布
图3  永磁同步电动机的效率分布
图4  螺旋桨阻升特性曲线
图5  桨叶弦长及桨叶角分布
图6  地面静态试验系统及其交联关系
图7  电推进系统拉力的实测结果与计算结果对比
图8  电推进系统功率的实测结果与计算结果对比
图9  电推进系统桨发匹配代理模型架构
图10  多隐含层BP神经网络的拓扑结构
图11  螺旋桨需用功率预测的相对误差
图12  优化匹配前后桨叶弦长分布对比
图13  优化匹配前后螺旋桨效率对比
14 PARK D, LEE Y, CHO T, et al. Design and performance evaluation of propeller for solar-powered high-altitude long-endurance unmanned aerial vehicle[J]. International Journal of Aerospace Engineering, 2018, 2018: 5782017.
15 LIU X Q, HE W L, WEI F M. Design of high altitude propeller using multilevel optimization[J]. International Journal of Computational Methods, 2020, 17(4): 1950004.
16 焦俊, 宋笔锋, 张玉刚, 等. 高空飞艇螺旋桨优化设计与气动性能车载试验[J]. 航空动力学报, 2017, 32(1): 196-202.
JIAO J, SONG B F, ZHANG Y G, et al. Optimal design and truck-mounted testing of aerodynamic performance for the propeller of high altitude airship[J]. Journal of Aerospace Power, 2017, 32(1): 196-202.
17 李星辉, 李权, 张健. 太阳能无人机高效螺旋桨气动设计[J]. 航空工程进展, 2020, 11(2): 220-225, 238.
LI X H, LI Q, ZHANG J. Aerodynamic design of a high efficient solar powered UAV propeller[J]. Advances in Aeronautical Science and Engineering, 2020, 11(2): 220-225, 238.
18 口启慧, 王海峰, 刘坤澎, 等. 基于一种贝叶斯优化框架的高空螺旋桨气动优化设计[J]. 空气动力学学报, 2023, 41(4): 96-103.
KOU Q H, WANG H F, LIU K P, et al. Aerodynamic design of high-altitude propellers within a Bayesian optimization framework[J]. Acta Aerodynamica Sinica, 2023, 41(4): 96-103.
19 刘新强, 贺卫亮. 平流层飞艇动力推进系统的分析与设计[J]. 航空动力学报, 2015, 30(6): 1407-1413.
LIU X Q, HE W L. Analysis and design of stratospheric airship propulsion system[J]. Journal of Aerospace Power, 2015, 30(6): 1407-1413.
20 McDONALD R A. Electric propulsion modeling for conceptual air-craft design[C]//52nd Aerospace Sciences Meeting. National Harbor, Maryland, Jan. 13-17, 2014.
21 LARMINIE J, LOWRY J. Electric vehicle technology explained[M]. 2nd ed. Hoboken: John Wiley & Sons, 2012.
1 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418.
MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623418.
2 石文, 贾永清, 李广佳, 等. 高空超长航时太阳能无人机主要技术问题分析[J]. 飞航导弹, 2021(6): 63-66, 104.
SHI W, JIA Y Q, LI G J, et al. Analysis of main technical problems of high altitude and ultra-long endurance solar unmanned aerial vehicle[J]. Aerodynamic Missile Journal, 2021(6): 63-66, 104.
3 ZHANG B W, SONG Z X, ZHAO F, et al. Overview of propulsion systems for unmanned aerial vehicles[J]. Energies, 2022, 15(2): 455.
4 杨希祥, 侯中喜, 郭正. 高空长航时太阳能飞机研究进展与技术挑战[J]. 国防科技大学学报, 2023, 45(6): 1-9.
YANG X X, HOU Z X, GUO Z. Development status and technology challenges of high-altitude long-endurance solar-powered aircraft[J]. Journal of National University of Defense Technology, 2023, 45(6): 1-9.
5 林漫群, 王国文, 张士志, 等. 无人机推进系统螺旋桨与发动机匹配实验研究[J]. 航天制造技术, 2016(3): 1-4, 9.
LIN M Q, WANG G W, ZHANG S Z, et al. Experimental study on propeller-engine matching of UAV propulsion system[J]. Aerospace Manufacturing Technology, 2016(3): 1-4, 9.
6 温占永, 罗洋. 中空长航时无人机恒速螺旋桨与发动机匹配研究[J]. 航空工程进展, 2020, 11(5): 672-678.
WEN Z Y, LUO Y. Study on matching constant speed propeller for piston engine on MALE UAV[J]. Advances in Aeronautical Science and Engineering, 2020, 11(5): 672-678.
7 张翼, 吴晴. 无人机动力推进系统的选型与性能匹配分析[J]. 航天制造技术, 2022(1): 41-45, 73.
ZHANG Y, WU Q. Analysis on selection and performance matching of UAV propulsion system[J]. Aerospace Manufacturing Technology, 2022(1): 41-45, 73.
8 杨彦林, 王哲. 某型通航飞机桨发匹配性能分析方法研究[J]. 科技与创新, 2023(17): 86-88.
YANG Y L, WANG Z. Research on performance analysis method of propeller-engine matching for a certain navigable aircraft[J]. Science and Technology & Innovation, 2023(17): 86-88.
9 史永运, 钟易成, 邓君湘, 等. 涡轮螺旋桨动力飞机桨发匹配性能仿真研究[J]. 机械制造与自动化, 2019, 48(4): 116-120.
SHI Y Y, ZHONG Y C, DENG J X, et al. Research on prop-engine cooperation performance simulation of propeller powered aircraft[J]. Machine Building & Automation, 2019, 48(4): 116-120.
10 TANG J, WANG X, DUAN D, et al. Optimisation and analysis of efficiency for contra-rotating propellers for high-altitude airships[J]. The Aeronautical Journal, 2019, 123(1263): 706-726.
11 MORGADO J, ABDOLLAHZADEH M, SILVESTRE M A R, et al. High altitude propeller design and analysis[J]. Aerospace Science and Technology, 2015, 45: 398-407.
12 YAO Y, MA D L, ZHANG L, et al. Aerodynamic optimization and analysis of low Reynolds number propeller with gurney flap for ultra-high-altitude unmanned aerial vehicle[J]. Applied Sciences, 2022, 12(6): 3195.
13 刘晓春, 祝小平, 周洲, 等. 基于太阳能飞机应用的低雷诺数翼型研究[J]. 航空学报, 2017, 38(4): 120459.
LIU X C, ZHU X P, ZHOU Z, et al. Research on low Reynolds number airfoils based on application of solar-powered aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4): 120459.
22 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社, 2006: 93-94.
LIU P Q. Air propeller theory and application[M]. Beijing: Beihang University Press, 2006: 93-94.
23 CHANDUKRISHNA Y, VENKATESH T N. Vorticity confinement technique and blade element method for accurate propeller modelling[J]. International Journal of Computational Fluid Dynamics, 2022, 36(8): 719-730.
24 赵所, 林立, 李震, 等. 基于BP神经网络的甲板运动预报与补偿技术[J]. 北京航空航天大学学报, 2024, 50(9): 2772-2780.
ZHAO S, LIN L, LI Z, et al. Deck motion prediction and compensation technology based on BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(9): 2772-2780.
25 雷光新, 刘巍, 杨涛, 等. 平流层飞艇螺旋桨设计参数对效率的影响[J]. 计算机仿真, 2011, 28(5): 56-59.
LEI G X, LIU W, YANG T, et al. Design parameters effects on propeller efficiency of stratosphere airship[J]. Computer Simulation, 2011, 28(5): 56-59.
[1] 李浩,王颖,马耀帅,孙春亚,黄荣杰,王昊琪,李琳利. 基于Kriging模型的大型立式磨机选粉机结构优化设计研究[J]. 工程设计学报, 2024, 31(6): 801-809.
[2] 杨培,张明路,孙凌宇. 爬壁机器人磁吸附模块设计分析与结构参数优化[J]. 工程设计学报, 2024, 31(5): 592-602.
[3] 刘永江, 彭宣霖, 唐雄辉, 李华, 齐紫梅. 轴流散热风机共振失效分析与优化设计[J]. 工程设计学报, 2021, 28(2): 203-209.
[4] 王艾伦, 刘乐, 刘庆亚. 基于Kriging代理模型的拉杆组合转子强度可靠性研究[J]. 工程设计学报, 2019, 26(4): 433-440.
[5] 王波, GEA Haechang, 白俊强, 张玉东, 宫建, 张卫民. 基于Stochastic Kriging模型的不确定性序贯试验设计方法[J]. 工程设计学报, 2016, 23(6): 530-536.
[6] 邱瑞斌, 雷飞, 陈园, 王琼. 基于权重比的车架多工况拓扑优化方法研究[J]. 工程设计学报, 2016, 23(5): 444-452.
[7] 马天政, 吕昊, 张义民. 一种基于Bayes方法的随机模型修正方法[J]. 工程设计学报, 2016, 23(3): 206-211.