Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (6): 716-724    DOI: 10.3785/j.issn.1006-754X.2024.03.412
【特约专栏】“双碳”背景下新型能源装备设计、制造、运维关键技术及其应用     
基于耦合场快速计算的核电厂主变压器数字孪生体搭建
薛杨(),刘森(),吕杰,彭锦,司恒远
深圳中广核工程设计有限公司,广东 深圳 518000
Construction of digital twin of nuclear power plant main transformer based on fast calculation of coupling field
Yang XUE(),Sen LIU(),Jie Lü,Jin PENG,Hengyuan SI
Shenzhen Zhongguang Nuclear Engineering Design Co. , Ltd. , Shenzhen 518000, China
 全文: PDF(4434 KB)   HTML
摘要:

针对核电厂主变压器智能化程度低,运维仍以人工巡检、定期维护为主,以及缺乏运行状态实时预测和评估手段的现状,搭建了基于耦合场快速计算的主变压器数字孪生体。首先,建立主变压器的精细化数字模型并开展多物理场实时仿真分析,获得了其关键部件的电磁场、损耗分布云图。然后,为解决主变压器流场和温度场仿真耗时长、无法实现运行状态实时监测的问题,提出了一种耦合场快速计算方法。最后,结合所提出的方法和各传感器采集的运行状态数据,搭建了主变压器的数字孪生体,实现了对实体主变压器多维度、全过程、全景式的状态监测与展示。结果表明,通过搭建数字孪生体可实现对不同工况下主变压器运行状态的实时监测和预测评估,为主变压器的运维巡检提供了便利,有助于核电厂的安全可靠运行。

关键词: 核电厂主变压器数字孪生数字模型耦合场快速计算    
Abstract:

Aiming at the low intelligence level of main transformers in nuclear power plants, the fact that the operation and maintenance still mainly rely on manual inspection and regular maintenance, and the lack of real-time prediction and evaluation means of operating state, the digital twin of the main transformer based on fast calculation of coupling field has been built. Firstly, a refined digital model of the main transformer was established and the multi-physical field real-time simulation analysis was carried out to obtain the electromagnetic field and loss distribution cloud maps of its key components. Then, in order to solve the problems that the simulation of the flow field and temperature field of the main transformer took a long time and the real-time monitoring of operating states could not be realized, a fast calculation method of coupling field was proposed. Finally, the digital twin of the main transformer was constructed by combining the proposed method with the operating state data collected by various sensors, achieving multi-dimensional, full process and panoramic state monitoring and display for the physical main transformer. The results show that the construction of digital twins can realize the real-time monitoring and predictive evaluation of the operating state of main transformers under different working conditions, which provides convenience for the operation and maintenance inspection of the main transformer and contributes to the safe and reliable operation of nuclear power plants.

Key words: nuclear power plant    main transformer    digital twin    digital model    coupling field    fast calculation
收稿日期: 2024-03-05 出版日期: 2024-12-31
CLC:  TM 623  
通讯作者: 刘森     E-mail: xueyangani@126.com;liusen19880123@126.com
作者简介: 薛 杨(1983—),女,高级工程师,硕士,从事核电设备数字化和智能化研究,E-mail: xueyangani@126.com,https://orcid.org/0009-0000-6629-6201
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
薛杨
刘森
吕杰
彭锦
司恒远

引用本文:

薛杨,刘森,吕杰,彭锦,司恒远. 基于耦合场快速计算的核电厂主变压器数字孪生体搭建[J]. 工程设计学报, 2024, 31(6): 716-724.

Yang XUE,Sen LIU,Jie Lü,Jin PENG,Hengyuan SI. Construction of digital twin of nuclear power plant main transformer based on fast calculation of coupling field[J]. Chinese Journal of Engineering Design, 2024, 31(6): 716-724.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.412        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I6/716

图1  主变压器线圈连接示意图
图2  主变压器数字模型
图3  额定运行工况下主变压器各部件的磁通密度分布云图
图4  额定运行工况下主变压器各部件的损耗分布云图
图5  主变压器耦合场快速计算流程
图6  三类节点的温度计算流程
图7  主变压器绕组的数字模型及其网格剖分结果
图8  主变压器绕组的流场分布云图
图9  主变压器绕组的温度场分布云图
图10  不同工况下主变压器绕组温度场的有限元仿真结果
图11  主变压器绕组第1饼线圈的节点
节点对流换热系数节点对流换热系数节点对流换热系数节点对流换热系数
185.021122322.7913474.018
249.32513243522.791
374.0181474.0182536
449.3251522.7912674.01837
5162722.7913885.021
674.01817283922.791
732.1591874.0182940
81922.7913074.0184149.325
9203122.7914222.791
1074.01821324349.325
1122.7912274.018334432.159
表1  主变压器绕组第1饼线圈边界节点的对流换热系数 (W/(m2·K))
图12  不同工况下主变压器绕组温度场的快速计算结果
模型绕组最高温度/K计算耗时/s
有限元仿真模型319.000 05.00
快速计算模型318.511 30.97
表2  入口温度为333 K工况下不同模型的计算结果对比
图13  主变压器数字孪生体
图14  不同工况下主变压器绕组的电磁场分布
图15  主变压器中高压、低压绕组的温度分布
1 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18.
TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18.
2 郭亮, 张煜. 数字孪生在制造中的应用进展综述[J]. 机械科学与技术, 2020, 39(4): 590-598.
GUO L, ZHANG Y. Review on application progress of digital twin in manufacturing[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(4): 590-598.
3 杜明芳. 基于数字孪生的智慧建筑系统集成研究[J]. 土木建筑工程信息技术, 2020, 12(6): 44-48.
DU M F. Intelligent building system integration research based on digital twin[J]. Journal of Information Technology in Civil Engineering and Architecture, 2020, 12(6): 44-48.
4 吴淼, 李瑞, 王鹏江, 等. 基于数字孪生的综掘巷道并行工艺技术初步研究[J]. 煤炭学报, 2020, 45(): 506-513.
WU M, LI R, WANG P J, et al. Preliminary study on the parallel technology of fully mechanized roadway based on digital twin[J]. Journal of China Coal Society, 2020, 45(): 506-513.
5 刘大同, 郭凯, 王本宽, 等. 数字孪生技术综述与展望[J]. 仪器仪表学报, 2018, 39(11): 1-10.
LIU D T, GUO K, WANG B K, et al. Summary and perspective survey on digital twin technology[J]. Chinese Journal of Scientific Instrument, 2018, 39(11): 1-10.
6 郭东升, 鲍劲松, 史恭威, 等. 基于数字孪生的航天结构件制造车间建模研究[J]. 东华大学学报(自然科学版), 2018, 44(4): 578-585, 607.
GUO D S, BAO J S, SHI G W, et al. Research on modeling of aerospace structural parts manufacturing workshop based on digital twin[J]. Journal of Donghua University (Natural Science), 2018, 44(4): 578-585, 607.
7 范春雷, 任行敏, 李国富, 等. 基于数字主线和数字孪生技术的生产过程安全预防系统生命周期应用[J]. 河南科技, 2018, 37(26): 40-42.
FAN C L, REN X M, LI G F, et al. Application of production process safety precaution system life cycle based on digital thread and digital twin technology[J]. Henan Science and Technology, 2018, 37(26): 40-42.
8 陶剑, 戴永长, 魏冉. 基于数字线索和数字孪生的生产生命周期研究[J]. 航空制造技术, 2017, 60(21): 26-31.
TAO J, DAI Y C, WEI R. Study on production lifecycle based on digital thread and digital twin[J]. Aeronautical Manufacturing Technology, 2017, 60(21): 26-31.
9 姚海, 金烨, 严隽琪. 产品功能需求的定性及定量分析[J]. 机械工程学报, 2010, 46(5): 191-198. doi:10.3901/jme.2010.05.191
YAO H, JIN Y, YAN J Q. Qualitative and quantitative analysis of requirements on product function[J]. Journal of Mechanical Engineering, 2010, 46(5): 191-198.
doi: 10.3901/jme.2010.05.191
10 杨柳, 汪天雄, 张润梅, 等. 基于模糊层次分析法的智能电饭煲设计评价与应用[J]. 机械设计, 2019, 36(4): 129-133.
YANG L, WANG T X, ZHANG R M, et al. Evaluation and application of intelligent rice cooker design based on fuzzy analytic hierarchy process[J]. Journal of Machine Design, 2019, 36(4): 129-133.
11 白仲航, 孙意为, 许彤, 等. 基于设计任务的概念设计中产品数字孪生模型的构建[J]. 工程设计学报, 2020, 27(6): 681-689.
BAI Z H, SUN Y W, XU T, et al. Construction of product digital twin model based on design task in conceptual design[J]. Chinese Journal of Engineering Design, 2020, 27(6): 681-689.
12 张重远, 刘迪程, 高成龙,等. 基于Twin Builder的110 kV油浸式变压器3维磁场降阶模型及损耗分析[J]. 高电压技术, 2024, 50(3): 941-951.
ZHANG Z Y, LIU D C, GAO C L, et al. Three-dimensional magnetic field model order reduction and loss analysis of 110 kV oil-immersed transformer based on Twin Builder[J]. High Voltage Engineering, 2024, 50(3): 941-951.
13 王伟杰, 雍明超, 黄金魁, 等. 高压设备数字孪生体构建及状态分析技术研究[J]. 高压电器, 2023, 59(11): 119-128.
WANG W J, YONG M C, HUANG J K, et al. Research on construction of condition analysis technology of digital twin for high voltage equipment[J]. High Voltage Apparatus, 2023, 59(11): 119-128.
14 王山, 高萌, 卓然, 等. 变压器温度耦合仿真模型的高效降阶算法研究[J]. 高压电器, 2023, 59(8): 115-126.
WANG S, GAO M, ZHUO R, et al. Research on high efficient order reduction algorithm for temperature coupling simulation model of transformer[J]. High Voltage Apparatus, 2023, 59(8): 115-126.
15 刘云鹏, 高艺倩, 刘刚, 等. 基于U-net神经网络的35 kV油浸式变压器绕组温度快速计算[J]. 高电压技术, 2024, 50(6): 2716-2725.
LIU Y P, GAO Y Q, LIU G, et al. Fast calculation of 35 kV oil-immersed transformer winding temperature based on U-net neural network[J]. High Voltage Engineering, 2024, 50(6): 2716-2725.
16 张旭辉, 鞠佳杉, 杨文娟, 等. 基于数字孪生的复杂矿用设备预测性维护系统[J].工程设计学报, 2022, 29(5): 643-650, 664.
ZHANG X H, JU J S, YANG W J, et al. Predictive maintenance system for complex mining equipment based on digital twin[J]. Chinese Journal of Engineering Design, 2022, 29(5): 643-650, 664.
[1] 孙宝印,郝永平,张誉瀚,李子洋. 基于数字孪生的热电池保温棉自动缠绕系统研究[J]. 工程设计学报, 2024, 31(4): 538-546.
[2] 谢章伟,张兴波,徐哲,张羽,张丰云,王茜,王萍萍,孙树峰,王海涛,刘纪新,孙维丽,曹爱霞. 基于数字孪生的激光加工零件表面温度监控系统的构建[J]. 工程设计学报, 2023, 30(4): 409-418.
[3] 徐哲,孙树峰,张兴波,王茜,张丰云,王萍萍,谢章伟,张羽,刘纪新,孙维丽,曹爱霞. 基于数字孪生的光学位移台交互控制系统[J]. 工程设计学报, 2023, 30(2): 254-261.
[4] 张旭辉,鞠佳杉,杨文娟,吕欣媛. 基于数字孪生的复杂矿用设备预测性维护系统[J]. 工程设计学报, 2022, 29(5): 643-650.
[5] 傅贵武, 王兴波, 田英. 基于五轴加工中心智能生产线的数字孪生应用研究[J]. 工程设计学报, 2021, 28(4): 426-432.
[6] 白仲航, 孙意为, 许彤, 丁满. 基于设计任务的概念设计中产品数字孪生模型的构建[J]. 工程设计学报, 2020, 27(6): 681-689.
[7] 王安邦, 孙文彬, 段国林. 基于数字孪生与深度学习技术的制造加工设备智能化方法研究[J]. 工程设计学报, 2019, 26(6): 666-674.