Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (5): 675-685    DOI: 10.3785/j.issn.1006-754X.2025.05.151
优化设计     
二维压电精密运动平台行程与频率的协同优化设计
张萌1,2(),朱禹清1,2,杨培基1,吴垚1,2
1.陕西科技大学 机电工程学院,陕西 西安 710021
2.高端自动机械与智能微机电系统陕西省高校工程研究中心,陕西 西安 710021
Co-optimization design of stroke and frequency for two-dimensional piezoelectric precision motion stage
Meng ZHANG1,2(),Yuqing ZHU1,2,Peiji YANG1,Yao WU1,2
1.College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
2.Shaanxi Provincial Engineering Research Center for Frontier Automatic Machinery and Intelligent Micro-Electromechanical Systems, Xi'an 710021, China
 全文: PDF(3021 KB)   HTML
摘要:

针对二维压电精密运动平台普遍存在的驱动频率受限及输出行程不足等问题,基于频响特性与输出行程协同提升的策略,结合杆式放大原理设计了一种新型的二维压电精密运动平台。首先,开展了柔性铰链构型对位移放大性能影响的定量分析,并基于矩阵位移法建立了精密运动平台的静/动力学一体化模型。然后,针对精密运动平台位移输出及动态响应特性的提升需求,从柔性铰链的尺寸参数入手,结合敏感度分析和约束优化方法对关键设计变量进行了排序和优化,并利用ANSYS Workbench软件对精密运动平台的位移放大倍数和固有频率进行了有限元仿真。最后,通过实验验证了优化后精密运动平台静/动力学一体化模型的准确性。实验结果表明:精密运动平台的一阶固有频率为2 123 Hz,与仿真值2 172 Hz的相对误差为2.256%;在不同输入位移下,平均位移放大倍数为2.771,与仿真结果的相对误差为7.910%。当输入电压为120 V时,精密运动平台的输入位移为9.620 μm,输出位移为28.805 μm,对应的位移放大倍数为2.994,与仿真值3.009的相对误差为0.499%。所设计的精密运动平台表现出良好的位移放大性能和快速响应特性,且结构相对紧凑,具有一定的实际应用价值。

关键词: 压电精密运动平台矩阵位移法协同优化有限元仿真    
Abstract:

Aiming at the common problems of limited driving frequency and insufficient output stroke in two-dimensional piezoelectric precision motion stages, a novel two-dimensional piezoelectric precision motion stage is designed by integrating a coordinated enhancement strategy of frequency response characteristics and output stroke with the lever-type amplification mechanism. Firstly, a quantitative analysis was conducted to investigate the influence of flexure hinge configurations on the displacement amplification performance, and an integrated statics/dynamics model of the precision motion stage was established based on the matrix displacement method. Then, in view of the improvement requirements for displacement output and dynamic response characteristics of the precision motion stage, starting from the dimensional parameters of flexure hinges, the key design variables were sorted and optimized by combining sensitivity analysis and constraint optimization methods. Meanwhile, the finite element simulation for the displacement amplification ratio and natural frequency of the precision motion stage was carried out using the ANSYS Workbench software. Finally, the accuracy of the integrated statics/dynamics model of the optimized precision motion stage was validated through experiments. The experimental results showed that the first-order natural frequency of the precision motion stage was 2 123 Hz, with a relative error of 2.256% compared to the simulated value of 2 172 Hz. Across varying input displacements, the average displacement amplification ratio was 2.771, with a relative error of 7.910% compared to the simulation results. When the input voltage was 120 V, the precision motion stage achieved an input displacement of 9.620 μm and an output displacement of 28.805 μm, and the corresponding displacement amplification ratio was 2.994, with a relative error of 0.499% compared to the simulated value of 3.009. The designed precision motion stage exhibits excellent displacement amplification performance and rapid response characteristics, and has a relatively compact structure, thus possessing certain practical application value.

Key words: piezoelectric precision motion stage    matrix displacement method    co-optimization    finite element simulation
收稿日期: 2025-04-14 出版日期: 2025-10-31
CLC:  TH 112  
基金资助: 陕西省自然科学基础研究计划(2025JC-YBMS-603);陕西省自然科学基础研究计划(2025JC-YBMS-557);陕西省教育厅重点科学研究计划项目(24JR041);陕西省教育厅服务地方专项项目(产业化培育项目)(24JC007);西安市科学技术局高校院所科技人员服务企业项目(2025JH-GXKJRC-0132);陕西高校青年创新团队项目(2025年)
作者简介: 张 萌(1990—),男,副教授,硕士生导师,博士,从事智能结构及系统的优化设计、压电驱动与精密定位、振动及非线性主动控制等研究,E-mail: zhangmeng@sust.edu.cn,https://orcid.org/0009-0003-9485-5578
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张萌
朱禹清
杨培基
吴垚

引用本文:

张萌,朱禹清,杨培基,吴垚. 二维压电精密运动平台行程与频率的协同优化设计[J]. 工程设计学报, 2025, 32(5): 675-685.

Meng ZHANG,Yuqing ZHU,Peiji YANG,Yao WU. Co-optimization design of stroke and frequency for two-dimensional piezoelectric precision motion stage[J]. Chinese Journal of Engineering Design, 2025, 32(5): 675-685.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.151        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I5/675

图1  不同类型的柔性铰链
图2  桥式构型放大原理
图3  杆式构型放大原理
图4  二维压电精密运动平台整体构型
图5  柔性单元节点位移示意图

柔性铰链

数量

位移放大

倍数

一阶固有

频率/Hz

侧向误差/μm
22.846 82 315.90.010 487
32.587 92 415.90.009 573
42.272 52 516.40.013 573
表1  不同柔性铰链数量对精密运动平台性能的影响
图6  精密运动平台离散化构型
图7  柔性铰链宽度对精密运动平台性能的影响
图8  柔性铰链高度对精密运动平台性能的影响
图9  位移放大倍数与一阶固有频率的Pareto前沿关系
材料弹性模量/GPa泊松比适用场景
钛合金1100.32~0.34高精度柔性机构、航空航天
铝合金690.33~0.34轻量化柔性机构/机器人
不锈钢2000.27~0.30医疗器械、微机电系统制造
硅橡胶0.001~0.0100.47~0.50仿生机构、人工肌肉
聚氨酯0.002~0.1000.45~0.50可拉伸电子器件
表2  不同材料的性能及其应用场景
图10  精密运动平台的静态分析结果
图11  精密运动平台的一阶模态分析结果
图12  精密运动平台的二阶模态分析结果
图13  精密运动平台的三阶模态分析结果
图14  压电驱动系统装配模型
图15  压电驱动系统性能测试平台
图16  不同电压下精密运动平台的位移响应曲线
图17  精密运动平台输入、输出位移及其线性拟合误差
输入位移/μm输出位移/μm位移放大倍数
2.46.62.750
3.58.72.486
4.211.12.643
4.513.63.022
6.216.52.661
6.919.32.797
7.421.62.919
8.223.72.890
表3  精密运动平台的位移放大倍数
图18  输入电压为120 V时精密运动平台的输入、输出位移
图19  正弦扫描信号
图20  压电驱动系统的频率响应曲线
  
[1] HE G L, LIU M, GAO X, et al. Chinese deep space stations: a brief review [antenna applications corner][J]. IEEE Antennas and Propagation Magazine, 2022, 64(1): 102-111.
[2] XIANG S H, CHEN S H, WU X, et al. Study on fast linear scanning for a new laser scanner[J]. Optics & Laser Technology, 2010, 42(1): 42-46.
[3] 濮成林. 微阵列生物芯片点样机器人控制系统的设计与实现[D]. 长春: 东北师范大学, 2017.
PU C L. Design and implementation of the multifunction robot control system for making biochip[D]. Changchun: Northeast Normal University, 2017.
[4] 李一帆, 张卫平, 邹阳, 等. 压电式微型仿生六足分节机器人结构设计与加工工艺研究[J]. 机械设计与制造, 2017(): 213-216.
LI Y F, ZHANG W P, ZOU Y, et al. Research on structure design and processing technology of piezoelectric micro bionic hexapod segmented robot[J]. Machinery Design & Manufacture, 2017(): 213-216.
[5] 张萌, 张松林, 吴垚, 等. 大转角快速反射镜柔性机构的优化设计与动态分析[J]. 红外技术, 2024, 46(6): 625-633.
ZHANG M, ZHANG S L, WU Y, et al. Optimization design and dynamic analysis of flexible mechanism for large-angle fast mirror[J]. Infrared Technology, 2024, 46(6): 625-633.
[6] 吴彤, 杨依领, 吴高华, 等. 二自由度大行程无耦合压电黏滑定位平台[J]. 光学 精密工程, 2024, 32(1): 62-72. doi:10.37188/ope.20243201.0062
WU T, YANG Y L, WU G H, et al. Two-DOF piezoelectric stick-slip positioning platform with large strokes and no coupling[J]. Optics and Precision Engineering, 2024, 32(1): 62-72.
doi: 10.37188/ope.20243201.0062
[7] JIN T, LUO S W, LE Y F, et al. Design and analysis of a low crosstalk error nested structure two-dimensional micro-displacement stage[J]. Advances in Mechanical Engineering, 2021, 13(4): 1-7.
[8] YUAN X Q, LIU Y X, ZOU H, et al. Design and analysis of a 2-D piezoelectric platform based on three-stage amplification and L-shaped guiding[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 7505712.
[9] ZHANG Q, ZHAO J G, SHEN X, et al. Design, modeling, and testing of a novel XY piezo-actuated compliant micro-positioning stage[J]. Micromachines, 2019, 10(9): 581.
[10] 张萌, 范鹏举, 王俊璞, 等. 基于Rayleigh-BP模型的压电驱动系统迟滞建模与前馈控制[J]. 中国机械工程, 2024, 35(9): 1597-1605.
ZHANG M, FAN P J, WANG J P, et al. Hysteresis modeling and feedforward control for piezoelectric driven systems based on Rayleigh-BP model[J]. China Mechanical Engineering, 2024, 35(9): 1597-1605.
[11] 朱锦辉, 王健, 江文松, 等. 基于椭圆形柔性铰链微克级单体式称量机构性能分析与优化[J]. 计量学报, 2024, 45(8): 1170-1176.
ZHU J H, WANG J, JIANG W S, et al. Performance analysis and optimization of microgram monomer weighing mechanism based on elliptical flexure hinge[J]. Acta Metrologica Sinica, 2024, 45(8): 1170-1176.
[12] 陈方鑫. 压电驱动的柔顺放大机构设计与控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
CHEN F X. Research on design and control of the piezoelectric actuated compliant amplification mechanism[D]. Harbin: Harbin Institute of Technology, 2020.
[13] 邢有望, 李明忠, 张金虎, 等. 基于矩阵位移法的超长工作面顶板挠度分布研究[J]. 煤炭科学技术, 2025, 53(5): 39-51.
XING Y W, LI M Z, ZHANG J H, et al. Study on roof deflection distribution of ultra-long working faces based on matrix displacement method[J]. Coal Science and Technology, 2025, 53(5): 39-51.
[14] 张萌, 张松林, 刘玉为, 等. 可调谐半导体激光器压电驱动系统的优化设计[J]. 中国机械工程, 2024, 35(4): 656-665.
ZHANG M, ZHANG S L, LIU Y W, et al. Optimal design of piezo-based actuated systems in tunable diode lasers[J]. China Mechanical Engineering, 2024, 35(4): 656-665.
[15] 蒋州, 曹军义, 凌明祥, 等. 新型双臂菱形压电柔性机构理论设计与建模[J]. 中国机械工程, 2017, 28(21): 2557-2561, 2566.
JIANG Z, CAO J Y, LING M X, et al. Theoretical design and modeling of a novel piezo-driven rhombic flexure mechanism with double beams[J]. China Mechanical Engineering, 2017, 28(21): 2557-2561, 2566.
[16] 杜健, 祝锡晶, 李婧. 基于压电陶瓷驱动的二维精密定位平台设计及分析[J]. 工程设计学报, 2025, 32(2): 199-207.
DU J, ZHU X J, LI J. Design and analysis of two-dimensional precision positioning platform based on piezoelectric ceramic drive[J]. Chinese Journal of Engineering Design, 2025, 32(2): 199-207.
[17] 崔志勇, 黄卫清, 孙梦馨, 等. 串联式二维微定位平台的设计[J]. 机械设计与制造, 2018(): 88-91.
CUI Z Y, HUANG W Q, SUN M X, et al. The design of tandem two dimensional micro positioning platform[J]. Machinery Design & Manufacture, 2018(): 88-91.
[18] 张萌, 刘时成, 张松林, 等. 大行程-高频响压电驱动纳米定位平台优化设计[J]. 压电与声光, 2024, 46(6): 934-941.
ZHANG M, LIU S C, ZHANG S L, et al. Optimized design of a large stroke-high frequency piezoelectric driven nanopositioning platform[J]. Piezoelectrics & Acoustooptics, 2024, 46(6): 934-941.
[19] 陈焱. 基于机构运动的大变形超材料[J]. 机械工程学报, 2020, 56(19): 2-13. doi:10.3901/jme.2020.19.002
CHEN Y. Review on kinematic metamaterials[J]. Journal of Mechanical Engineering, 2020, 56(19): 2-13.
doi: 10.3901/jme.2020.19.002
[20] 郭晨瑜, 侯国栋, 钱小石, 等. 基于聚合物的电驱动软体机器人研究进展[J]. 航空学报, 2025, 46(15): 431563.
GUO C Y, HOU G D, QIAN X S, et al. Recent progress on polymer-based electrically driven soft robots[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(15): 431563.
[21] 周子希, 王贞艳. 压电陶瓷作动器的MPI动态迟滞建模与控制[J]. 振动与冲击, 2024, 43(18): 131-136.
ZHOU Z X, WANG Z Y. Modified PI dynamic hysteresis modeling and control of piezoelectric ceramic actuators[J]. Journal of Vibration and Shock, 2024, 43(18): 131-136.
[1] 杜健,祝锡晶,李婧. 基于压电陶瓷驱动的二维精密定位平台设计及分析[J]. 工程设计学报, 2025, 32(2): 199-207.
[2] 徐美娟,汪启亮,洪永烽,龙益平,刘通,郭彬. 嵌套余弦函数型多轴柔性铰链的设计与分析[J]. 工程设计学报, 2025, 32(2): 252-261.
[3] 徐智皓,陆晓伟,谢雨欣,赖磊捷. 音圈电机驱动的三自由度大行程柔性偏摆台设计与分析[J]. 工程设计学报, 2025, 32(1): 82-91.
[4] 谢章伟,张兴波,徐哲,张羽,张丰云,王茜,王萍萍,孙树峰,王海涛,刘纪新,孙维丽,曹爱霞. 基于数字孪生的激光加工零件表面温度监控系统的构建[J]. 工程设计学报, 2023, 30(4): 409-418.
[5] 谢博伟,金莫辉,杨洲,段洁利,屈明宇,李锦辉. 3D打印TPU材料的力学性能及模型参数研究[J]. 工程设计学报, 2023, 30(4): 419-428.
[6] 李毅,陈国华,夏铭,李波. 电主轴冷却系统设计与仿真优化[J]. 工程设计学报, 2023, 30(1): 39-47.
[7] 涂文兵,袁晓文,杨锦雯,杨本梦. 不同元件故障状态下滚动轴承的动态特性研究[J]. 工程设计学报, 2023, 30(1): 82-92.
[8] 李阳, 聂羽飞. 钠燃烧试验厂房隔热密封门的设计与分析[J]. 工程设计学报, 2022, 29(1): 115-122.
[9] 严国平, 周俊宏, 钟飞, 李哲, 周宏娣, 彭震奥. 纸塑复合袋磁力压紧纠偏装置设计及优化[J]. 工程设计学报, 2021, 28(3): 367-373.
[10] 刘永江, 彭宣霖, 唐雄辉, 李华, 齐紫梅. 轴流散热风机共振失效分析与优化设计[J]. 工程设计学报, 2021, 28(2): 203-209.
[11] 李玄, 周双武, 路松, 丁冰晓. 基于二级杠杆机构的二自由度微定位平台设计与分析[J]. 工程设计学报, 2020, 27(4): 533-540.
[12] 夏 磊,江浩斌. 基于刚度匹配的汽车保险杠防撞梁改进设计[J]. 工程设计学报, 2015, 22(1): 84-88.