Please wait a minute...
工程设计学报  2017, Vol. 24 Issue (1): 64-69    DOI: 10.3785/j.issn.1006-754X.2017.01.009
建模、分析、优化和决策     
基于灰色预测与滑模变结构的ABS仿真分析
邓涛, 李军营, 罗俊林, 周豪
重庆交通大学 机电与车辆工程学院, 重庆 400074
The simulation and analysis of ABS based on grey prediction and sliding mode variable structure
DENG Tao, LI Jun-ying, LUO Jun-lin, ZHOU Hao
School of Mechatronics & Automotive Engineering, Chongqing Jiaotong University, Chongqing 400074, China
 全文: PDF(1714 KB)   HTML
摘要:

为研究汽车制动防抱死系统(antilock brake system,ABS)的超前性、实时性与鲁棒性,结合灰色预测和滑模变结构控制方法,提出基于灰色预测GM(1,1)模型与滑模变结构控制的ABS综合控制算法,建立仿真模型进行数据的对比分析.结果表明:相对于单滑模或bang-bang控制,灰色预测与滑模变结构综合控制方法使汽车ABS超前运行,缩短了制动时间与制动距离;有助于缓解滑模变结构方法自身带来的抖动缺陷.因此,灰色预测与滑模变结构综合控制方法有助于提升ABS的响应速度、实时鲁棒性与人体舒适性.

关键词: ABS灰色预测滑模变结构仿真    
Abstract:

To study the advance, real-time and robustness of ABS, the ABS integrated control algorithm based on grey prediction GM (1, 1) model and sliding mode variable structure was proposed, which combined grey prediction control and sliding mode variable structure control method. Then, the ABS integrated control algorithm simulation model was established to compare and analyze the data. The results showed that the grey prediction and sliding mode variable structure integrated control algorithm could make ABS running to be advanced function, and could short braking time and braking distance compared with single sliding mode or bang-bang control method. Furthermore, it also could relieve the defect of fluctuation caused by sliding mode variable control algorithm, and could enhance the quick response of ABS. So the grey prediction and sliding mode variable structure integrated control algorithm can improve response speed,real-time robustness and comfort.

Key words: ABS    grey prediction    sliding mode variable structure    simulation
收稿日期: 2016-07-15 出版日期: 2017-02-28
CLC:  U462.3  
基金资助:

国家自然科学基金资助项目(51305473);中国博士后科学基金资助项目(2014M552317);重庆市博士后研究人员科研项目特别资助(xm2014032);重庆市基础与前沿研究计划项目(cstc2013jcyjA60007);重庆市教委科学技术研究项目(KJ120421).

作者简介: 邓涛(1982-),男,江西新干人,教授,博士,从事混合动力研究,E-mail:d82t722@163.com.http://orcid.org//0000-0001-6881-9854
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邓涛
李军营
罗俊林
周豪

引用本文:

邓涛, 李军营, 罗俊林, 周豪. 基于灰色预测与滑模变结构的ABS仿真分析[J]. 工程设计学报, 2017, 24(1): 64-69.

DENG Tao, LI Jun-ying, LUO Jun-lin, ZHOU Hao. The simulation and analysis of ABS based on grey prediction and sliding mode variable structure[J]. Chinese Journal of Engineering Design, 2017, 24(1): 64-69.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2017.01.009        https://www.zjujournals.com/gcsjxb/CN/Y2017/V24/I1/64

[1] 李果. 车辆防抱死制动理论与应用[M]. 北京:国防工业出版社, 2009:46-202. LI Guo. Vehicle anti-lock braking theory and application[M]. Beijing:National Defense Industry Press, 2009:46-202.
[2] 王伟达, 丁能根. ABS逻辑门限值自调整控制方法研究与试验验证[J]. 机械工程学报, 2010,46(22):90-95. WANG Wei-da, DING Neng-gen. ABS logic threshold self-tuning control method research and test[J]. Journal of Mechanical Engineering, 2010, 46(22):90-95.
[3] 晏蔚光,余达太,李果,等. 汽车防抱制动系统自适应模糊控制算法[J].北京信息科技大学学报,2004,26(2):188-191. YAN Wei-guang, YU Da-tai, LI Guo, et al. Car against holding brake system adaptive fuzzy control Algorithm[J]. Journal of Beijing University of Information Science and Technology, 2004, 26(2):188-191.
[4] TORRES J D S, GALICIA M, LOUKIANOV A G, et al. A sliding mode regulator for antilock brake system[C]. 18th World Congress of the International Federation of Automatic Control. Milano, August 28-September 2, 2011:134-142.
[5] DOUGLAS A R. An overview of automatic speaker recognition technology[J]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing,2002,4(1):4072-4075.
[6] 周兵,徐蒙.基于滑模极值搜索算法的车辆驱动防滑控制策略[J].农业机械学报,2015,46(2):307-311. ZHOU Bing, XU Meng. Based on sliding mode extremum search algorithm of vehicle drive torque control Strategy[J]. Journal of Agricultural Machinery, 2015, 46(2):307-311.
[7] 崔杰,耀国,刘思峰.一种新的灰色预测模型及其建模机理[J].控制与决策,2009,24(11):1702-1706. CUI Jie, YAO Guo, LIU Si-feng. A new grey forecasting model and its modeling mechanism[J]. Control and Decision Making, 2009, 24(11):1702-1706.
[8] LUO Ding-sheng, CHEN Ke. Refine decision boundaries of a statistical ensemble by active learning[J]. Proceedings of the International Joint Conference on Neural Networks,2003,2(1):1523-1528.
[9] KYUNG Y J, LEE H S. Bootstrap and aggregating VQ classifier for speaker recognition[J]. Electronics Letters, 1999, 35(12):973-974.
[10] 李艳鸽,李粮纲,张乾.基于优化GM(1,1)模型的可视化沉降预测数据的精度研究[J].工程设计学报,2009,16(2):145-148. LI Yan-ge,LI Liang-gang,ZHANG Qian. Research on accuracy of visualized settlement prediction based on optimized GM (1,1)[J]. Chinese Journal of Engineering Design, 2009, 16(2):145-148.
[11] 谢乃明,刘思峰.离散GM (1, 1)模型与灰色预测模型建模机理[J].系统工程理论与实践,2005(1):93-98. XIE Nai-ming,LIU Si-feng. Discrete GM (1, 1) model and the modeling mechanism of gray prediction model[J]. Systems Engineering:Theory & Practice, 2005(1):93-98.
[12] 刘波,张玘. 汽车防抱制动系统自适应滑模控制算法的研究和半实物仿真[J]. 国防科技大学学报, 2008,30(5):125-130. LIU Bo, ZHANG Qi. Car against holding brake system adaptive sliding mode control algorithm research and hardware-in-the-loop simulation[J]. Journal of National University of Defense Technology, 2008, 30(5):125-130.
[13] REN H P, LIU D. Nonlinear feedback control of chaos in permanent magnet synchronous motor[J]. IEEE Transactions on Circuits and Systems II, 2006, 53(1):45-50.
[14] 唐国元,宾鸿赞. ABS的模糊滑模变结构控制方法及仿真研究[J].中国机械工程,2007,18(13):1629-1632. TANG Guo-yuan, BIN Hong-zan. ABS fuzzy sliding mode variable structure control method and simulation study[J]. China Mechanical Engineering, 2007, 18(13):1629-1632.
[15] 林程, 彭春雷, 曹万科.独立驱动电动汽车稳定性的滑模变结构控制[J].汽车工程, 2015,37(2):132-138. LIN Cheng, PENG Chun-lei, CAO Wan-ke. Sliding mode variable structure control for the stability of independent drive electric vehicle[J]. Automotive Engineering, 2015, 37(2):132-138.
[16] 张兵,唐猛,廖海洲.基于负载观测的PMSM滑模抗扰动自适应控制[J].工程设计学报,2013,20(5):427-433. ZHANG Bing, TANG Meng, LIAO Hai-zhou. Anti-disturbance adaptive sliding mode control of PMSM based on load torque observer[J]. Chinese Journal of Engineering Design, 2013, 20(5):427-433.
[17] WEI D Q, LUO X S, WANG B H, et al. Robust adaptive dynamic surface control of chaos in permanent magnet synchronous motor[J]. Physics Letters A, 2007, 363(1/2):71-77.
[1] 赵迪,陈果,陈小利,王熊锦. 轮式搜救机器人地形自适应机构设计及越障性能分析[J]. 工程设计学报, 2023, 30(5): 579-589.
[2] 王柏村,朱凯凌,鲍劲松,王峰,谢海波,杨华勇. 基于数字底座的涂装车身缓存区智能设计与调度优化[J]. 工程设计学报, 2023, 30(4): 399-408.
[3] 谢章伟,张兴波,徐哲,张羽,张丰云,王茜,王萍萍,孙树峰,王海涛,刘纪新,孙维丽,曹爱霞. 基于数字孪生的激光加工零件表面温度监控系统的构建[J]. 工程设计学报, 2023, 30(4): 409-418.
[4] 谢博伟,金莫辉,杨洲,段洁利,屈明宇,李锦辉. 3D打印TPU材料的力学性能及模型参数研究[J]. 工程设计学报, 2023, 30(4): 419-428.
[5] 张栋,杨培,黄哲轩,孙凌宇,张明路. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
[6] 李洋波,蔡改贫,阮辽. 对辊破碎机对钨矿石的层压破碎特性研究[J]. 工程设计学报, 2023, 30(2): 212-225.
[7] 徐诗洋,吴炳晖,纪冬梅,戴新宇. 电力隧道自动巡检机器人设计与运动仿真[J]. 工程设计学报, 2023, 30(1): 32-38.
[8] 李毅,陈国华,夏铭,李波. 电主轴冷却系统设计与仿真优化[J]. 工程设计学报, 2023, 30(1): 39-47.
[9] 芮宏斌,李路路,王天赐,段凯文. 两栖仿海龟机器人动力学建模与运动控制研究[J]. 工程设计学报, 2023, 30(1): 73-81.
[10] 涂文兵,袁晓文,杨锦雯,杨本梦. 不同元件故障状态下滚动轴承的动态特性研究[J]. 工程设计学报, 2023, 30(1): 82-92.
[11] 张旭,赖磊捷,朱利民. 超精密大行程麦克斯韦磁阻驱动器磁场建模与推力分析[J]. 工程设计学报, 2022, 29(6): 748-756.
[12] 李科军,陈淼林,王江银,姚学军,邓旻涯,高龙. 湿喷机液压制动系统制动阀性能研究[J]. 工程设计学报, 2022, 29(5): 579-586.
[13] 王晨,高波,杨旭. Stewart式六维力传感器轻量化设计[J]. 工程设计学报, 2022, 29(4): 419-429.
[14] 唐绍禹,吴杰,张辉,邓兵兵,黄禹铭,黄浩. 多极式磁流变离合器温度场仿真与实验研究[J]. 工程设计学报, 2022, 29(4): 484-492.
[15] 李科军,邓旻涯,黄文静,张宇,曾家旺,陈淼林. 混凝土湿喷机摆动系统工作特性研究[J]. 工程设计学报, 2022, 29(4): 519-526.