浙江大学学报(工学版), 2024, 58(3): 611-621 doi: 10.3785/j.issn.1008-973X.2024.03.018

机械工程

基于扩张滑模观测器的电液伺服系统鲁棒控制

臧万顺,, 沈刚,, 赵军, 臧克江

1. 青岛理工大学 信息与控制工程学院,山东 青岛 266520

2. 安徽理工大学 安徽省煤矿安全采掘装备制造业创新中心,安徽 淮南 232001

3. 安徽理工大学 机电工程学院,安徽 淮南 232001

4. 山东科技大学 交通学院,山东 青岛 266590

5. 龙岩学院 物理与机电工程学院,福建 龙岩 364012

Extended sliding mode observer-based robust tracking control scheme for electro-hydraulic servo systems

ZANG Wanshun,, SHEN Gang,, ZHAO Jun, ZANG Kejiang

1. School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266520, China

2. The Coal Mine Safety Mining Equipment Innovation Center of Anhui Province, Anhui University of Science and Technology, Huainan 232001, China

3. School of Mechatronics Engineering, Anhui University of Science and Technology, Huainan 232001, China

4. College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China

5. School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan 364012, China

通讯作者: 沈刚,男,教授. orcid.org/0000-0002-4787-0324. E-mail:shenganghit@163.com

收稿日期: 2023-03-9  

基金资助: 山东自然科学基金资助项目(ZR2021QE107,ZR2022QF011);国家自然科学基金资助项目(U21A20125,62203279);安徽省煤矿安全采掘装备制造业创新中心开放课题基金资助项目(CMSMEICAP2023007);江苏省自然科学基金杰出青年基金资助项目(BK20200029);福建省科技厅引导性资助项目(2020Y0088);龙岩市科技计划重点资助项目(2020LYF9002);龙岩学院科学研究启动基金资助项目(LB2018035);山西省揭榜招标项目(20201101010).

Received: 2023-03-9  

Fund supported: 山东自然科学基金资助项目(ZR2021QE107,ZR2022QF011);国家自然科学基金资助项目(U21A20125,62203279);安徽省煤矿安全采掘装备制造业创新中心开放课题基金资助项目(CMSMEICAP2023007);江苏省自然科学基金杰出青年基金资助项目(BK20200029);福建省科技厅引导性资助项目(2020Y0088);龙岩市科技计划重点资助项目(2020LYF9002);龙岩学院科学研究启动基金资助项目(LB2018035);山西省揭榜招标项目(20201101010).

作者简介 About authors

臧万顺(1987—),男,副教授,博士,从事电液伺服系统控制研究.orcid.org/0000-0001-5253-0984.E-mail:wanshunzang@163.com , E-mail:wanshunzang@163.com

摘要

为了提高电液伺服系统(EHSSs)控制性能,考虑外部干扰力、摩擦力、参数变动、结构振动及未建模特性等系统不确定性,构建系统状态空间模型. 为了应对系统不确定性,提出新型扩张滑模观测器(ESMO),用于同时估计系统全状态和系统不确定性,并结合等值注入原理及饱和函数进行合理优化. 利用系统不确定性的估计值,在反步控制设计中引入障碍Lyapunov函数,将系统的跟踪误差约束在一定范围内,结合参数自适应律,提高系统控制性能. 为了验证所提控制方法的性能,在MATLAB/Simulink软件平台构建仿真模型,进一步地,搭建电液伺服系统实验台及实时控制系统,进行仿真和实验验证. 结果表明所提方法的性能优于基于障碍Lyapunov函数的反步控制器及传统的反步控制器.

关键词: 电液伺服系统 ; 系统不确定性 ; 扩张滑模观测器 ; 参数自适应 ; 障碍Lyapunov函数 ; 反步控制

Abstract

A state-space model was constructed by considering system uncertainties such as external disturbances, friction force, parameter uncertainties, structural vibrations as well as unmodeled characteristics, in order to improve the control performance of electro-hydraulic servo systems (EHSSs). A novel extended sliding mode observer (ESMO) was proposed to simultaneously estimate the system full-state and the system uncertainties, in order to address the system uncertainties. The ESMO was optimized using the equivalent injection principle and proper saturation functions. The estimated value of the system uncertainties was then utilized in the design of the backstepping control architecture, where a barrier Lyapunov function (BLF) was introduced to constrain the tracking error within a desired certain range. In addition, parameter adaptation laws were incorporated to enhance the control performance of the system. A simulation model was established in the MATLAB/Simulink software, to validate the performance of the proposed control methodology. What's more, an experimental setup of the EHSS was implemented, and some real-time control experiments were conducted. The results from both simulation and experiment demonstrate that the proposed methodology outperforms the BLF-based backstepping controller and the traditional backstepping controller.

Keywords: electro-hydraulic servo system ; system uncertainty ; extended sliding mode observer ; parameter adaption ; barrier Lyapunov function ; backstepping control

PDF (2416KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

臧万顺, 沈刚, 赵军, 臧克江. 基于扩张滑模观测器的电液伺服系统鲁棒控制. 浙江大学学报(工学版)[J], 2024, 58(3): 611-621 doi:10.3785/j.issn.1008-973X.2024.03.018

ZANG Wanshun, SHEN Gang, ZHAO Jun, ZANG Kejiang. Extended sliding mode observer-based robust tracking control scheme for electro-hydraulic servo systems. Journal of Zhejiang University(Engineering Science)[J], 2024, 58(3): 611-621 doi:10.3785/j.issn.1008-973X.2024.03.018

电液伺服系统具有响应速度快、输出功率大、信号处理灵活、易实现参量反馈等优良特性,在工业领域得到广泛应用[1-2],如:机器人[3]、负载模拟器[4]、结构振动[5]等.

如今,电液伺服系统正向高性能方向发展,多种控制方法被开发出来,如:PI控制器[6]、基于反馈线性化的控制器[7]、自适应控制器[8]、鲁棒控制器[9]、滑模控制器[10]等,这些控制器都可以使系统输出按照参考信号运动. 然而,由于系统中存在外部干扰力、摩擦力、参数变动、结构振动以及未建模特性等系统不确定性,系统难以达到高性能. 反步控制将系统模型分成多个子模型,针对每个子模型选取Lyapunov函数,推导得出虚拟控制律和实际控制律[11-12],进一步通过匹配特定的系统参数变动[813],加入参数自适应律来提高系统性能. 随后,障碍Lyapunov函数在反步中应用[1114],用来限制系统的输出在一定范围内,提高了系统性能. Yang等[11]和Won等[14]将障碍Lyapunov函数应用在反步控制中,结合系统模型,得到相应的控制律,通过仿真和实验验证了方法的有效性. 董振乐等[13]构建带有匹配和不匹配干扰项的电液伺服系统模型,设计预设性能控制器,并进行了验证. Yao等[8]得出部分系统参数与系统状态之间的映射关系,并在反步控制中加以补偿,提高了系统性能.

通常将系统不确定性集成定义为Δ1Δ2d1d2,构建系统状态模型;进一步地,依据模型设计干扰观测器,在线估计系统不确定性,利用估计值提高系统性能[15-16]. Won等[14]、Ginoya等[15]和王云飞等[16]将干扰观测器与反步结合,提高了系统性能. 而后,扩张状态观测器被提出,在重构系统全状态的同时,利用扩张状态重构系统不确定性,通过状态重构误差乘以控制增益($ {L_i} ({x_i} - {\hat x_i}) $)的形式来补偿重构误差[17-19],提高控制增益可提高重构精度[19],从而提高控制性能.

滑模观测器也是重要的系统状态重构手段[20],用滑模观测器中的不连续函数${L_i}{\rm{sign}}\;({x_i} - {\hat x_i}) $完全替换扩张状态观测器中的$ {L_i}({x_i} - {\hat x_i})$,并利用饱和函数消除滑模中的抖振现象[21],用于估计系统状态和补偿系统不确定性,结合相应的控制方法也许能收到良好的控制效果. Zhang等 [22]提出基于扩张滑模观测器的系统不确定性估计方法及控制方法,系统状态的重构误差通过$ {L_i}({x_i} - {\hat x_i}) $补偿,系统不确定性(扩张状态)的重构误差通过不连续函数$ {L_i}{\text{sign}}\;({x_i} - {\hat x_i}) $补偿,通过仿真验证了其性能;Zhang等[23]和Kim等[24]将扩张滑模观测器应用于永磁电机的状态重构和系统不确定性估计(完全使用不连续函数补偿重构误差),取得了良好的效果. 得益于以上研究,Zang等[25]将扩张滑模观测器应用于电液伺服系统,结合估计值设计了鲁棒自适应反步控制器,通过实验证明了其有效性. Ahn又将扩张滑模观测器应用于液压机器人的控制[26]和电液伺服系统的高精度控制[27],通过仿真验证了其效果优于扩张状态观测器.

本研究利用扩张滑模观测器在线估计系统不确定性,并通过系统实时输出反馈设计参数自适应律,最终设计基于障碍Lyapunov函数的自适应反步控制器,补偿不匹配系统不确定性和匹配更新系统参数,实现电液伺服系统高精度控制.

1. 电液伺服系统模型

图1所示为阀控液压缸原理图. 图中,$ {p_1} $$ {p_2} $分别为液压缸进、回油口的压力,$ {q_{V_1}} $为液压缸进油口的体积流量,$ {q_{{{V_2}}}} $为液压缸回油口的体积流量,$ {p_{\text{s}}} $为油源压力. 液压缸流量连续性方程为

图 1

图 1   阀控液压缸原理图

Fig.1   Schematic diagram of servo valve controlled hydraulic cylinder


$ {q_{{{V}}_{{\mathrm{L}}}}} = {{\left( {{q_{{{V}}_1}}+{q_{{{V_2}}}}} \right)} \mathord{\left/ {\vphantom {{\left( {{q_{{{V}}1}}+{q_{{{V2}}}}} \right)} 2}} \right. } 2}{\text{ = }}{A_{{\mathrm{p}}}}{\dot x_{{\mathrm{p}}}}+{C_{{{\mathrm{tl}}}}}{p_{\text{L}}}+{\dot p_{\text{L}}}{{{V_{{\mathrm{t}}}}} \mathord{\left/ {\vphantom {{{V_{t}}} \left({4{\beta _{{\mathrm{e}}}}}\right)}} \right. } \left({4{\beta _{{\mathrm{e}}}}}\right)} . $
(1)

式中:$ {q_{{{V_{\mathrm{L}}}}}} $为液压缸两腔的负载体积流量;xp为液压缸活塞杆的位移;pL为液压缸两腔的负载压降,pL=p1p2Ap为液压缸活塞杆的有效作用面积;Ctl为液压缸总泄漏系数;Vt为液压缸进油腔和回油腔的总体积;βe为液压油的有效体积弹性模量. 负载力平衡方程为

$ - m{\ddot x_{{\mathrm{p}}}} - {B_{{\mathrm{p}}}}{\dot x_{{\mathrm{p}}}}+{A_{{\mathrm{p}}}}{p_{\text{L}}} = {F_{{\mathrm{L}}}}{\text+}{F_{\text{F}}} . $
(2)

式中:FL为液压缸活塞杆的外部干扰力,FF为液压缸活塞杆与缸筒之间的摩擦力,m为负载的总质量,Bp为液压油的黏性阻尼系数. 液压缸的负载体积流量是由电液伺服阀的阀芯位移控制的,可以得到

$ {q_{{V_{\mathrm{L}}}}} = {C_{{\mathrm{d}}}}w{x_{{\mathrm{v}}}}\left\{ {{{\left[ {{p_{{\mathrm{s}}}} - {{\mathrm{{\mathrm{sign}}\; }}}\; ({x_{{\mathrm{v}}}}){p_{\text{L}}}} \right]} \mathord{\left/ {\vphantom {{\left[ {{p_{s}} - {{\mathrm{sign}}\; } ({x_{v}}){p_{\text{L}}}} \right]} \rho }} \right. } \rho }}\right\}^{1/2} . $
(3)

式中:xv为伺服阀的阀芯位移,Cd为伺服阀的排放系数,$ w $为伺服阀的节流窗口面积梯度,ρ为液压油的密度. 依照文献[25],得到伺服阀的控制电压:

$u_{\mathrm{L}}=u_{\max }\left\{\Delta p_{\mathrm{r}} /\left[p_{\mathrm{s}}-\operatorname{sign}\left(q_{V_{\mathrm{L}}}\right) p_{\mathrm{L}}\right]\right\}^{1/2} q_{V_{\mathrm{L}}} / q_{V_{\mathrm{r}}}. $
(4)

式中:Δpr为伺服阀的额定压降,$ {q_{{{V_{\mathrm{r}}}}}} $为伺服阀在额定压降下的额定体积流量,umax为伺服阀的最大控制电压. 选择系统状态变量为$ {\boldsymbol{x}}=[{x_1},{x_2},{x_3}]= [{x_{\mathrm{p}}},{{\dot x}_{\mathrm{p}}},{p_{\mathrm{L}}}] $,得到系统状态方程如下:

$ \left.\begin{array}{l}\dot{x}_1=x_2, \\\dot{x}_2=\underbrace{\theta_1 x_3-\theta_2 x_2}_{f_1\left(x_2, x_3\right)} \underbrace{-F_{\mathrm{L}} / m-F_{\mathrm{F}} / m+\Delta \theta_1 x_3-\Delta \theta_2 x_2+\mu}_{\varDelta_1}, \\\dot{x}_3=\underbrace{-\theta_3 x_2-\theta_4 x_3}_{f_2\left(x_2, x_3\right)}+\theta_5 q_{V _{\mathrm{L}}} \underbrace{-\Delta \theta_3 x_2-\Delta \theta_4 x_3}_{\varDelta_2}, \\\dot{\varDelta}_1=Y_1, \\\dot{\varDelta}_2=Y_2, \\y=x_1.\end{array} \right\} $
(5)

式中:θ1=Ap/mθ2=Bp/mθ3=4Apβe/Vtθ4=4Ctlβe/Vtθ5=4βe/Vt;由于液压缸的物理量参数的计量误差和其他参数的估计误差,系统状态方程中的参数与实际物理系统中的参数存在差异,因此,在系统的状态方程中考虑参数变动,Δθ1、Δθ2、Δθ3和Δθ4表示θ1θ2θ3θ4的参数变动;Δ1为由外部干扰力、摩擦力、参数变动、结构振动和未建模特性带来的系统不确定性,表示由系统不确定性带来的液压缸活塞杆的负载波动,Δ1=−FL/mFF/mθ1x3−Δθ2x2+μμ表示活塞杆在运动过程中带动整个系统的机械结构运动产生的结构振动和一些油液非线性等未建模特性;Δ2表示由θ3θ4的参数变动带来的系统不确定性,表示由系统不确定性带来的液压缸两腔的油压波动,Δ2=−Δθ3x2−Δθ4x3Υj为集成系统不确定性Δj的变化速率,j=1,2; y=x1表示系统的位移输出.

假设1 电液伺服系统的期望位移$ {y_{\mathrm{d}}} $及其一阶、二阶和三阶时间导数$ {\dot y_{\mathrm{d}}} 、 {\ddot y_{\mathrm{d}}} $$ {\dddot y_{\mathrm{d}}} $都是有界的,$ {\varDelta _j} $以及他们的变化速率$ {Y _j} $都是有界的,即$ {\varDelta _j} \leqslant {\varDelta _{j\max }} $$ {Y _j} \leqslant {Y _{j\max }} $.

假设2 函数f1(x2,x3)和f2(x2,x3)相对于x2x3是满足Lipschitz条件的. 存在4个Lipschitz常数γ1γ2γ3γ4满足如下条件:

$ \begin{split} &\left| {{f_1}\left( {{x_2},{x_3}} \right) - {{\hat f}_1}\left( {{{\hat x}_2},{{\hat x}_3}} \right)} \right| = \left| {{{\tilde f}_1}\left( {{{\tilde x}_2},{{\tilde x}_3}} \right)} \right| \leqslant \\ &\quad {\gamma _1}\left| {{x_2} - {{\hat x}_2}} \right|+{\gamma _2}\left| {{x_3} - {{\hat x}_3}} \right| = {\gamma _1}\left| {{{\tilde x}_2}} \right|+{\gamma _2}\left| {{{\tilde x}_3}} \right| ,\end{split} $
(6)

$ \begin{split} &\left| {{f_2}\left( {{x_2},{x_3}} \right) - {{\hat f}_2}\left( {{{\hat x}_2},{{\hat x}_3}} \right)} \right| = \left| {{{\tilde f}_2}\left( {{{\tilde x}_2},{{\tilde x}_3}} \right)} \right| \leqslant \\ &\quad {\gamma _3}\left| {{x_2} - {{\hat x}_2}} \right|+{\gamma _4}\left| {{x_3} - {{\hat x}_3}} \right| = {\gamma _3}\left| {{{\tilde x}_2}} \right|+{\gamma _4}\left| {{{\tilde x}_3}} \right| .\end{split} $
(7)

式中:$ {\hat x_i} $为扩张滑模观测器的估计值,$ {\tilde x_i} $为相应的估计误差, i=1, 2, 3.

2. 控制器设计

图2所示为整体闭环控制系统结构图. 基于电液伺服系统的状态空间模型,利用扩张滑模观测器的观测值$ {\hat \varDelta _1} $$ {\hat \varDelta _2} $,以及参数自适应律,设计基于障碍Lyapunov函数的自适应反步控制器;随后,真实控制律$ {q_{{{V_{\mathrm{L}}}}}} $被转换为控制电压来驱动电液伺服阀,从而使液压缸按照参考信号运动.

图 2

图 2   闭环控制系统结构图

Fig.2   Overall architecture of closed-loop control system


2.1. 扩张滑模观测器设计

基于电液伺服系统的状态方程(式(5)),考虑如下5阶扩张滑模观测器:

$ \left. \begin{array}{l}{\dot {\hat x}_1} = {{\hat x}_2} + {L_1}{\mathrm{sign}}\;\left( {{x_1} - {{\hat x}_1}} \right),\\{\dot {\hat x}_2} = {\theta _1}{{\hat x}_3} - {\theta _2}{{\hat x}_2} + {L_2}{\mathrm{sign}}\;\left( {{x_2} - {{\hat x}_2}} \right) + {{\hat \varDelta }_1},\\{\dot {\hat x}_3} = - {\theta _3}{{\hat x}_2} - {\theta _4}{{\hat x}_3} + {\theta _5}{q_{V_{\mathrm{L}}}} + {L_3}{\mathrm{sign}}\;\left( {{x_3} - {{\hat x}_3}} \right) + {{\hat \varDelta }_2}, \\{\dot {\hat \varDelta }_1} = {L_4}{L_2}{\mathrm{sign}}\;\left( {{x_2} - {{\hat x}_2}} \right),\\{\dot {\hat \varDelta }_2} = {L_5}{L_3}{\mathrm{sign}}\;\left( {{x_3} - {{\hat x}_3}} \right).\end{array} \right\}$
(8)

式中:$ {\hat \varDelta _j} $为集成系统不确定性$ {\varDelta _j} $的观测值,L1L2L3L4L5为扩张滑模观测器的控制增益. 定义观测器的观测误差向量为$ {\tilde {\boldsymbol{X}}} = {\left[ {{{\tilde x}_1},{{\tilde x}_2},{{\tilde x}_3},{{\tilde \varDelta }_1},{{\tilde \varDelta }_2}} \right]^{\mathrm{T}}} = $$ \left[ {{x_1} - {{\hat x}_1},{x_2} - {{\hat x}_2},{x_3} -{{\hat x}_3},}\right. \left.{{\varDelta _1} - {{\hat \varDelta }_1},{\varDelta _2} - {{\hat \varDelta }_2}} \right]^{\mathrm{T}} $,可得其观测误差动力学为

$ \left.\begin{array}{l}\dot{\tilde{x}}_1=\tilde{x}_2-L_1 \operatorname{sign}\;\tilde{x}_1, \\\dot{\tilde{x}}_2=\theta_1 \tilde{x}_3-\theta_2 \tilde{x}_2-L_2 \operatorname{sign}\;\tilde{x}_2+\hat{\varDelta}_1, \\\dot{\tilde{x}}_3=-\theta_3 \tilde{x}_2-\theta_4 \tilde{x}_3-L_3 \operatorname{sign}\;\tilde{x}_3+\hat{\varDelta}_2, \\ \dot{\tilde{\varDelta}}_1=L_4 L_2 \operatorname{sign}\;\tilde{x}_2-Y_1, \\ \dot{\tilde{\varDelta}}_2=L_5 L_3 \operatorname{sign}\;\tilde{x}_3-Y_2.\end{array}\right\} $
(9)

理论1 存在足够大的控制增益${L_1} > \left| {{{\tilde x}_2}} \right|+{\sigma _1}$${L_2} > {\gamma _1}\left| {{{\tilde x}_2}} \right|+{\gamma _2}\left| {{{\tilde x}_3}} \right|+\left| {{{\tilde \varDelta }_1}} \right|+{\sigma _2},\;{L_3} > {\gamma _3}\left| {{{\tilde x}_2}} \right|+{\gamma _4}\left| {{{\tilde x}_3}} \right|+ \left| {{{\tilde \varDelta }_2}} \right|+ {\sigma _3},\; {L_{j+3}} > 0 $,且$ \sigma_{i} $为小的正参数,可以保证观测误差向量$ {\tilde {\boldsymbol{X}}} $在有限时间T>0内趋近于0.

证明 考虑如下3个滑模面为$ S_{i}=\tilde{x}_{i} $,且其对时间导数为

$ \left.\begin{array}{l}\dot{S}_1=\dot{\tilde{x}}_1=\tilde{x}_2-L_1 \operatorname{sign}\;\tilde{x}_1, \\\dot{S}_2=\dot{\tilde{x}}_2=\tilde{f}_1\left(\tilde{x}_2, \tilde{x}_3\right)-L_2 \operatorname{sign}\;\tilde{x}_2+\hat{\varDelta}_1, \\\dot{S}_3=\dot{\tilde{x}}_3=\tilde{f}_2\left(\tilde{x}_2, \tilde{x}_3\right)-L_3 \operatorname{sign}\;\tilde{x}_3+\hat{\varDelta}_2,\end{array}\right\} $
(10)

可以得到如下不等式:

$ {S_1}{\dot S_1} = {\tilde x_1}\left[ {{{\tilde x}_2} - {L_1}{\mathrm{sign}}\; {{{\tilde x}_1}} } \right] \leqslant \left| {{{\tilde x}_1}} \right|\left[ {\left| {{{\tilde x}_2}} \right| - {L_1}} \right] . $
(11)

因此,如果使$ {L_1} > \left| {{{\tilde x}_2}} \right|+{\sigma _1} $,则$ {S_1}{\dot S_1} < {\sigma _1}\left| {{{\tilde x}_1}} \right| \leqslant 0 $,且滑模面S1会达到在T1>0内滑动状态,可以得到 $ {\tilde x_1} $T1内逐渐趋近于0. 进一步,可以得到

$ \left.\begin{array}{l}x_1=\dot{\hat{x}}_1, \\\tilde{x}_1=\dot{\tilde{x}}_1=\tilde{x}_2-L_1 \operatorname{sign}\;\tilde{x}_1=0, \\\tilde{x}_2=L_1 \operatorname{sign}\;\tilde{x}_1.\end{array}\right\} $
(12)

基于假设2,可以得到

$ \begin{split} {S_2}{{\dot S}_2} \leqslant& \left| {{{\tilde x}_2}} \right|\left[ {\left| {{{\tilde f}_1}\left( {{{\tilde x}_2},{{\tilde x}_3}} \right)} \right| - {L_2}+\left| {{{\tilde \varDelta }_1}} \right|} \right] \leqslant \\ & \left| {{{\tilde x}_2}} \right|\left[ {{\gamma _1}\left| {{{\tilde x}_2}} \right|+{\gamma _2}\left| {{{\tilde x}_3}} \right| - {L_2}+\left| {{{\tilde \varDelta }_1}} \right|} \right].\end{split} $
(13)

若使${L_2} > {\gamma _1}\left| {{{\tilde x}_2}} \right|+{\gamma _2}\left| {{{\tilde x}_3}} \right|+\left| {{{\tilde \varDelta }_1}} \right|+{\sigma _2}$, 则 $ {S_2}\;{\dot S_2} \leqslant {\sigma _2}\left| {{{\tilde x}_2}} \right| \leqslant 0 $$ {\tilde x_2} $会在T2>0内趋近于0;进一步地,$ \tilde{x}_2=\dot{\tilde{x}}_2=0 $,可以得到$ {\tilde x_2} $$ {\tilde \varDelta _1} $的动力学为

$ \left. \begin{gathered} {\theta _1}{{\tilde x}_3}+{{\tilde \varDelta }_1} = - {L_2}{\mathrm{sign}}\; {{{\tilde x}_2}} , \\ {{\dot {\tilde \varDelta }}_1} = {L_4}{L_2}{\mathrm{sign}}\; {{{\tilde x}_2}} - {Y _1} = {L_4}\left( { - {{\tilde \varDelta }_1} - {\theta _1}{{\tilde x}_3}} \right) - {Y _1}. \end{gathered} \right\} $
(14)

类似地,基于假设2,有

$ \begin{split} {S_3}{{\dot S}_3} \leqslant &\left| {{{\tilde x}_3}} \right|\left[ {\left| {{{\tilde f}_2}\left( {{{\tilde x}_2},{{\tilde x}_3}} \right)} \right| - {L_3}+\left| {{{\tilde \varDelta }_2}} \right|} \right] \leqslant \\& \left| {{{\tilde x}_3}} \right|\left[ {{\gamma _3}\left| {{{\tilde x}_2}} \right|+{\gamma _4}\left| {{{\tilde x}_3}} \right| - {L_3}+\left| {{{\tilde \varDelta }_2}} \right|} \right] \end{split} . $
(15)

若使${L_3} > {\gamma _3}\left| {{{\tilde x}_2}} \right|+{\gamma _4}\left| {{{\tilde x}_3}} \right|+\left| {{{\tilde \varDelta }_2}} \right|+{\sigma _3}$, 则 $ {S_3}\;{\dot S_3} \leqslant {\sigma _3}\left| {{{\tilde x}_3}} \right| \leqslant 0 $$ {\tilde x_3} $会在T3>0内趋近于0,且$ {\tilde x_3} = {\dot {\tilde x}_3} = 0 $.

$ \left. \begin{array}{l} {{\tilde \varDelta }_2} = - {L_3}{\mathrm{sign}}\; {{{\tilde x}_3}}, \\ {{\dot {\tilde \varDelta} }_2} = {L_5}{L_3}{\mathrm{sign}}\; {{{\tilde x}_3}} - {Y _1}, \\ {{\dot {\tilde \varDelta} }_2}+{L_5}{{\tilde \varDelta }_2}+{Y _1} = 0 .\end{array} \right\} $
(16)

可见$ {\dot {\tilde \varDelta} _2}+{L_5}{\tilde \varDelta _2}+{Y _1} = 0 $为一阶微分方程,可以得到其解为

$ {\tilde \varDelta _2} = {{\mathrm{e}}^{ - {L_5}t}}\left( {C+\int {{Y _1}{{\mathrm{e}}^{ - {L_5}t}}{\mathrm{d}}t} } \right) . $
(17)

因此,只要$ {L_5} > 0 $$ {\tilde \varDelta _2} $会在T4>0内收敛于0. 可见的收敛和$ {\dot {\tilde \varDelta} _1} $不相关,因此,式(14)可以重写为

$ {\dot {\tilde \varDelta} _1} = {L_4}\left( { - {{\tilde \varDelta }_1} - {\theta _1}{{\tilde x}_3}} \right) - {Y _1} = - {L_4}{\tilde \varDelta _1} - {Y _1} . $
(18)

类似于式(17),式(18)也是一阶微分方程. 因此,只要$ {L_4} > 0 $$ {\tilde \varDelta _1} $会在T5>0内收敛于0. 定义一个新的变量T

$ T={\mathrm{sup}}\;\left\{{{T_{1},T_{2},T_{3},T_{4},T_{5}}}\right\}. $
(19)

因此,$ \bar {\boldsymbol{X}} $会在有限时间T内收敛于0. 证毕.

利用滑模观测器的等值注入原理及合适的饱和函数,针对电液伺服系统的扩张滑模观测器的最终形式[25]可以表示为

$ \left. \begin{array}{l} {{\dot {\hat x}}_1} = {{\hat x}_2}+{L_1}\dfrac{{{x_1} - {{\hat x}_1}}}{{\left| {{x_1} - {{\hat x}_1}} \right|+{\delta _1}}}, \\ {v_{2{\mathrm{eq}}}} = {L_1}\dfrac{{{x_1} - {{\hat x}_1}}}{{\left| {{x_1} - {{\hat x}_1}} \right|+{\delta _1}}}, \\ {{\dot {\hat x}}_2} = {\theta _1}{{\hat x}_3} - {\theta _2}{{\hat x}_2}+{L_2}\dfrac{{{v_{2{\mathrm{eq}}}}}}{{\left| {{v_{2{\mathrm{eq}}}}} \right|+{\delta _2}}}+{{\hat \varDelta }_1}, \\ {{\dot {\hat x}}_3} = - {\theta _3}{{\hat x}_2} - {\theta _4}{{\hat x}_3}+{\theta _5}{q_{V_{\mathrm{L}}}}+{L_3}\dfrac{{{x_3} - {{\hat x}_3}}}{{\left| {{x_3} - {{\hat x}_3}} \right|+{\delta _3}}}+{{\hat \varDelta }_2}, \\ {{\dot {\hat \varDelta} }_1} = {L_4}{L_2}\dfrac{{{v_{2{\mathrm{eq}}}}}}{{\left| {{v_{2{\mathrm{eq}}}}} \right|+{\delta _2}}}, \\ {{\dot {\hat \varDelta} }_2} = {L_5}{L_3}\dfrac{{{x_3} - {{\hat x}_3}}}{{\left| {{x_3} - {{\hat x}_3}} \right|+{\delta _3}}} .\end{array} \right\} $
(20)

式中:δi为3个小的正实数.

2.2. 参数自适应映射

在实际物理系统中,液压油的黏性阻尼系数Bp、液压油的体积弹性模量βe和液压缸的总体泄漏系数Ctl都是估计值. 因此,考虑电液伺服系统模型中$ {\theta _2} $$ {\theta _3} $$ {\theta _4} $的参数变动,并定义他们的估计值为$ {\hat \theta _2} $$ {\hat \theta _3} $$ {\hat \theta _4} $. 可得,估计误差为$ {\tilde \theta _2} = {\hat \theta _2} - {\theta _2} $$ {\tilde \theta _3} = {\hat \theta _3} - {\theta _3} $$ {\tilde \theta _4} = {\hat \theta _4} - {\theta _4} $. 进而,不连续参数映射可以定义[8]

$ {\mathrm{Proj}}_{{\theta }_{i+1}}\left({z}_{i+1}\right)=\left\{\begin{array}{*{20}{l}}0 ,&{\hat{\theta }}_{i+1}={\theta }_{i+1\mathrm{max}},\;{z}_{i+1} > 0;\\0 ,&{\hat{\theta }}_{i+1}={\theta }_{i+1\mathrm{min}},\;{z}_{i+1} < 0;\\ {z}_{i+1} ,&其他.\end{array}\right. $
(21)

则参数自适应律可以表示为

$ {\dot {\hat \theta} _{i+1}} = {{\mathrm{Proj}}_{{\theta _{i+1}}}}\left( {{\tau _{i+1}}{\varphi _{i+1}}} \right) . $
(22)

式中:$ {\tau _{i+1}} $为参数更新控制增益,$ {\tau _{i+1}> 0}\;;\;{\varphi _{i+1}} $为待设计的参数自适应函数.

由扩张滑模观测器补偿的$ {\hat \varDelta _j} $中包含参数变动,然而在实际控制系统中,系统的实际状态是由真实的传感器反馈得到的,因此,考虑$ {\theta _2} $$ {\theta _3} $$ {\theta _4} $的参数变动来提高控制器性能.

2.3. 基于障碍Lyapunov函数的自适应反步控制器设计

定义电液伺服系统的状态跟踪误差向量如下:

$ {\boldsymbol{z}}=[z_{1},z_{2},z_{3}]^{{\mathrm{T}}}=[y_{{\mathrm{d}}}-x_{1},x_{2}-\alpha _{1},x_{3}-\alpha_{2}]^{{\mathrm{T}}}. $
(23)

式中:z1为系统输出位移跟踪误差,|z1|<kbkb为系统跟踪误差限定;系统的输出满足kcl<y=x1<kcukcu=yd+kbkcl=ydkbα1α2为控制器设计的2个虚拟控制量.

理论2 结合电液伺服系统状态方程(式(5))和扩张滑模观测器的2个估计值$ {\hat \varDelta _1} $$ {\hat \varDelta _2} $,存在如下控制律及参数自适应律,使得对于t>0,系统跟踪误差满足|z1|<kb

$ \left. \begin{array}{l} {z_1} = {x_1} - {y_{{\mathrm{d}}}},\;{\alpha _1} = - {k_1}{z_1}\left( {k_{{\mathrm{b}}}^{2} - z_1^2} \right)+{{\dot y}_{\mathrm{d}}}, \\ {z_2} = {x_2} - {\alpha _1}, \\ {\alpha _2} = {{\left( {{{\hat \theta }_2}{x_2} - {k_2}{z_2} + {{\dot \alpha }_1} - {{{z_1}} \mathord{\left/ {\vphantom {{{z_1}} {\left( {k_{{\mathrm{b}}}^{2} - z_1^2} \right)}}} \right. } { \left( {k_{{\mathrm{b}}}^{2} - z_1^2} \right) }} - {{\hat \varDelta }_1}} \right)} \mathord{\left/ {\vphantom {{\left( {{{\hat \theta }_2}{x_2} - {k_2}{z_2}+{{\dot \alpha }_1} - {{{z_1}} \mathord{\left/ {\vphantom {{{z_1}} { \left( {k_{{\mathrm{b}}}^{2} - z_1^2} \right)}}} \right. } {\left( {k_{b}^{2} - z_1^2} \right)}} - {{\hat \varDelta }_1}} \right)} {{\theta _1},}}} \right. } {{\theta _1},}} \\ {z_3} = {x_3} - {\alpha _2}, \\ {q_{V_{\mathrm{L}}}} = {{\left( {{{\hat \theta }_3}{x_2}+{{\hat \theta }_4}{x_3} - {{\hat \varDelta }_2}+{{\dot \alpha }_2} - {k_3}{z_3} - {\theta _1}{z_2}} \right)} \mathord{\left/ {\vphantom {{\left( {{{\hat \theta }_3}{x_2} + {{\hat \theta }_4}{x_3} - {{\hat \varDelta }_2}+{{\dot \alpha }_2} - {k_3}{z_3} - {\theta _1}{z_2}} \right)} {{\theta _5}.}}} \right. } {{\theta _5}.}} \\ \end{array} \right\} $
(24)

同时,参数自适应函数适当选择为

$ {\varphi _2} = - {x_2}{z_2},\;\; {\varphi _3} = - {x_2}{z_3} ,\;\; {\varphi _4} = - {x_3}{z_3}, $
(25)

式中:ki为控制增益. 如果控制增益Lj+3适当选择为Lj+3>kj+1/4且ki>0,则|z1|<kbz会在t>0后落入一个有界的超球面Hr内,并且在t>t0的情况下保持在Hr内.

$ \begin{split} {H_{\mathrm{r}}} =& - {k_1}z_1^2 - \sum\limits_{j = 1}^2 {{k_{j+1}}{{\left( {{z_{j+1}} - \frac{1}{{2{k_{j+1}}}}{{\tilde \varDelta }_j}} \right)}^2}}- \\ & \sum\limits_{j = 1}^2 {{\xi _j}{{\left( {{{\tilde \varDelta }_j} - \frac{1}{{2{\xi _j}}}{Y _j}} \right)}^2}} +\sum\limits_{j = 1}^2 {\frac{1}{{4{\xi _j}}}Y _{j\max }^2} \end{split}. $
(26)

式中:ξj=Lj+3kj+1/4.

证明 考虑如下障碍Lyapunov函数为$ \chi_{1}=\left\{\ln \left[k_{\mathrm{b}}^{2} /\left(k_{\mathrm{b}}^{2}-z_{1}^{2}\right)\right]\right\} / 2 $,基于$ \dot{z}_{1}=x_{2}-\dot{y}_{{\mathrm{d}}} $,可以得到其对时间的导数为

$ {\dot \chi }_{1}=\frac{z_{1}\left(x_{2}-\dot{y}_{{\mathrm{d}}}\right)}{k_{{\mathrm{b}}}^{2}-z_{1}^{2}}=\frac{z_{1}\left(z_{2}+\alpha_{1}-\dot{y}_{{\mathrm{d}}}\right)}{k_{{\mathrm{b}}}^{2}-z_{1}^{2}} . $
(27)

基于虚拟控制量α1(式(24)),可以得到

$ \dot{\chi}_{1}=-k_{1} z_{1}^{2}+\frac{z_{1} z_{2}}{k_{{\mathrm{b}}}^{2}-z_{1}^{2}} . $
(28)

基于$ {\dot z_2} = {\theta _1}{x_3} - {\hat \theta _2}{x_2}+{\tilde \theta _2}{x_2}+{\hat \varDelta _1}+{\tilde \varDelta _1} - {\dot \alpha _1} $,考虑如下Lyapunov函数为$ {\chi _2}{\text{ = }}{\chi _1}+{{z_2^2} \mathord{\left/ {\vphantom {{z_2^2} 2}} \right. } 2} $ $+{{\tilde \theta _2^2} \mathord{\left/ {\vphantom {{\tilde \theta _2^2} {2{\tau _2}}}} \right. } \left({2{\tau _2}}\right)}+{{\tilde \varDelta _1^2} \mathord{\left/ {\vphantom {{\tilde \varDelta _1^2} 2}} \right. } 2} $,对时间求导得到

$ \begin{split} {{\dot \chi }_2}{\text{ = }}& - {k_1}z_1^2+\frac{{{z_1}{z_2}}}{{k_{\mathrm{b}}^2 - z_1^2}}+{z_2}{{\dot z}_2}+ \frac{{{{\tilde \theta }_2}{{\dot {\tilde \theta} }_2}}}{{{\tau _2}}}+{{\tilde \varDelta }_1}{{\dot {\tilde \varDelta} }_1} = \\ &-{k_1}z_1^2+\frac{{{z_1}{z_2}}}{{k_{\mathrm{b}}^2 - z_1^2}}+{\frac{{{{\tilde \theta }_2}{{\dot {\tilde \theta} }_2}}}{{{\tau _2}}} }+{{\tilde \varDelta }_1}{{\dot {\tilde \varDelta} }_1} +\\&{z_2}\left( {{\theta _1}{z_3}+{\theta _1}{\alpha _2} - {{\hat \theta }_2}{x_2}+{{\tilde \theta }_2}{x_2}+{{\hat \varDelta }_1} + {{\tilde \varDelta }_1} - {{\dot \alpha }_1}} \right) .\end{split} $
(29)

基于虚拟控制量$ \alpha_{2} $ (式(24))和$ {\dot {\tilde \varDelta} _1} = - {L_4}{\tilde \varDelta _1} - {Y _1} $ (式(18)),可以得到

$ \begin{split} {{\dot \chi }_2} =& - {k_1}z_1^2 - {k_2}z_2^2+{\theta _1}{z_2}{z_3}+{z_2}{{\tilde \theta }_2}{x_2} + \\&{{{{\tilde \theta }_2}{{\dot {\tilde \theta} }_2}} \mathord{\left/ {\vphantom {{{{\tilde \theta }_2}{{\dot {\tilde \theta }}_2}} {{\tau _2}}}} \right. } {{\tau _2}}}+{z_2}{{\tilde \varDelta }_1}+{{\tilde \varDelta }_1}\left( { - {L_4}{{\tilde \varDelta }_1} - {Y _1}} \right) .\end{split} $
(30)

由于$ {\dot z_3} = - {\hat \theta _3}{x_2}+{\tilde \theta _3}{x_2} - {\hat \theta _4}{x_3} +{\tilde \theta _4}{x_3}+{\theta _5}{q_{V_{\mathrm{L}}}}+{\hat \varDelta _2}+ $ $ {\tilde \varDelta _2} - {\dot \alpha _2} $,考虑Lyapunov函数为$ {\chi _3}={\chi _2}+{{z_3^2} \mathord{\left/ {\vphantom {{z_3^2} 2}} \right. } 2}+{\tilde \theta _3^2} \mathord{\left/ \vphantom {\tilde \theta _3^2}\right.} \left({2{\tau _3}}\right)+{{\tilde \theta _4^2} \mathord{\left/ {\vphantom {{\tilde \theta _4^2} \left({2{\tau _4}}\right)}} \right. } \left({2{\tau _4}}\right)}+{{\tilde \varDelta _2^2} \mathord{\left/ {\vphantom {{\tilde \varDelta _2^2} 2}} \right. } 2} $,可以得到其对时间的导数为

$ \begin{split} {\dot{\chi }}_{3}=&{\dot{\chi }}_{2}+{z}_{3}{\dot{z}}_{3}+{\tilde{\theta }}_{3}{\dot{\tilde{\theta }}}_{3}/{\tau }_{3}+{\tilde{\theta }}_{4}{\dot{\tilde{\theta }}}_{4}/{\tau }_{4}+{\tilde{\varDelta }}_{2}{\dot{\tilde{\varDelta }}}_{2}=\\& -{k}_{1}{z}_{1}^{2}-{k}_{2}{z}_{2}^{2}+{\theta }_{1}{z}_{2}{z}_{3}+{z}_{2}{\tilde{\theta }}_{2}{x}_{2}+\\& {\tilde{\theta }}_{2}{\dot{\tilde{\theta }}}_{2}/{\tau }_{2}+{z}_{2}{\tilde{\varDelta }}_{1}+{\tilde{\varDelta }}_{1}\left(-{L}_{4}{\tilde{\varDelta }}_{1}^{}-{Y }_{1}\right)+\\ &{z}_{3}\left(-{\hat{\theta }}_{3}{x}_{2}+{\tilde{\theta }}_{3}{x}_{2}-{\hat{\theta }}_{4}{x}_{3}+{\tilde{\theta }}_{4}{x}_{3}+\right.\\ & \left.{\theta }_{5}{q}_{V_{\mathrm{L}}}+{\hat{\varDelta }}_{2}+{\tilde{\varDelta }}_{2}-{\dot{\alpha }}_{2}\right)+\\ &{\tilde{\theta }}_{3}{\dot{\tilde{\theta }}}_{3}/{\tau }_{3}+{\tilde{\theta }}_{4}{\dot{\tilde{\theta }}}_{4}/{\tau }_{4}+{\tilde{\varDelta }}_{2}{\dot{\tilde{\varDelta }}}_{2} . \end{split}$
(31)

基于$ {q_{{{V_{\mathrm{L}}}}}} $(式(24))和$ {\dot {\tilde \varDelta} _2} = - {L_5}{\tilde \varDelta _2} - {Y _2} $ (式(16)),可以得到

$ \begin{split} {{\dot \chi }_3} =& - {k_1}z_1^2 - {k_2}z_2^2 - {k_3}z_3^2+{z_2}{{\tilde \theta }_2}{x_2}+{{{{\tilde \theta }_2}{{\dot {\tilde \theta} }_2}} \mathord{\left/ {\vphantom {{{{\tilde \theta }_2}{{\dot {\tilde \theta} }_2}} {{\tau _2}}}} \right. } {{\tau _2}}} + \\&{z_2}{{\tilde \varDelta }_1} - {L_4}\tilde \varDelta _1^2 - {{\tilde \varDelta }_1}{Y _1}+{z_3}{{\tilde \theta }_3}{x_2}+{{{{\tilde \theta }_3}{{\dot {\tilde \theta} }_3}} \mathord{\left/ {\vphantom {{{{\tilde \theta }_3}{{\dot {\tilde \theta} }_3}} {{\tau _3}}}} \right. } {{\tau _3}}} + \\&{z_3}{{\tilde \theta }_4}{x_3}+{{{{\tilde \theta }_4}{{\dot {\tilde \theta} }_4}} \mathord{\left/ {\vphantom {{{{\tilde \theta }_4}{{\dot {\tilde \theta} }_4}} {{\tau _4}}}} \right. } {{\tau _4}}}+{z_3}{{\tilde \varDelta }_2} - {L_5}\tilde \varDelta _2^2 - {Y _2}{{\tilde \varDelta }_2} = \\& -{k_1}z_1^2 - {k_2}{\left( {{z_2} - \frac{1}{{2{k_2}}}{{\tilde \varDelta }_1}} \right)^2} - {k_3}{\left( {{z_3} - \frac{1}{{2{k_3}}}{{\tilde \varDelta }_2}} \right)^2} - \\& {\xi _1}{\left( {{{\tilde \varDelta }_1} - \frac{1}{{2{\xi _1}}}{Y _1}} \right)^2} - {\xi _2}{\left( {{{\tilde \varDelta }_2} - \frac{1}{{2{\xi _2}}}{Y _2}} \right)^2} + \\&\frac{1}{{4{\xi _1}}}Y _1^2+\frac{1}{{4{\xi _2}}}Y _2^2+{{\tilde \theta }_2}\left( {{z_2}{x_2}+{{{{\dot {\tilde \theta} }_2}} \mathord{\left/ {\vphantom {{{{\dot {\tilde \theta} }_2}} {{\tau _2}}}} \right. } {{\tau _2}}}} \right) + \\&{{\tilde \theta }_3}\left( {{z_3}{x_2}+{{{{\dot {\tilde \theta} }_3}} \mathord{\left/ {\vphantom {{{{\dot {\tilde \theta} }_3}} {{\tau _3}}}} \right. } {{\tau _3}}}} \right)+{{\tilde \theta }_4}\left( {{z_3}{x_3}+{{{{\dot {\tilde \theta} }_4}} \mathord{\left/ {\vphantom {{{{\dot {\tilde \theta} }_4}} {{\tau _4}}}} \right. } {{\tau _4}}}} \right) \leqslant \\& -{k_1}z_1^2 - \sum\limits_{j = 1}^2 {{k_{j+1}}{{\left( {{z_{j+1}} - \frac{1}{{2{k_{j+1}}}}{{\tilde \varDelta }_j}} \right)}^2}} - \\& \sum\limits_{j = 1}^2 {{\xi _j}{{\left( {{{\tilde \varDelta }_j} - \frac{1}{{2{\xi _j}}}{Y _j}} \right)}^2}} +\sum\limits_{j = 1}^2 {\frac{1}{{4{\xi _j}}}Y _{j\max }^2} + \\&{{\tilde \theta }_2}\left( {{z_2}{x_2}+{{{{\dot {\tilde \theta} }_2}} \mathord{\left/ {\vphantom {{{{\dot {\tilde \theta} }_2}} {{\tau _2}}}} \right. } {{\tau _2}}}} \right)+{{\tilde \theta }_3}\left( {{z_3}{x_2}+{{{{\dot {\tilde \theta} }_3}} \mathord{\left/ {\vphantom {{{{\dot {\tilde \theta} }_3}} {{\tau _3}}}} \right. } {{\tau _3}}}} \right)+ \\&{{\tilde \theta }_4}\left( {{z_3}{x_3}+{{{{\dot {\tilde \theta} }_4}} \mathord{\left/ {\vphantom {{{{\dot {\tilde \theta} }_4}} {{\tau _4}}}} \right. } {{\tau _4}}}} \right).\\[-5pt]\end{split} $
(32)

由于θi+1为固定值,$ {\dot \theta _{i + 1}} = 0 $,进一步可以得到$ {\dot{ \tilde \theta} _i}_{+1} = {\dot {\hat \theta} _i}_{+1} $,式(32)可以改写为

$ \begin{split} {{\dot \chi }_3} \leqslant & - {k_1}z_1^2 - \sum\limits_{j = 1}^2 {{k_{j+1}}{{\left( {{z_{j+1}} - \frac{1}{{2{k_{j+1}}}}{{\tilde \varDelta }_j}} \right)}^2}} - \\ & \sum\limits_{j = 1}^2 {{\xi _j}{{\left( {{{\tilde \varDelta }_j} - \frac{1}{{2{\xi _j}}}{Y _j}} \right)}^2}} +\sum\limits_{j = 1}^2 {\frac{1}{{4{\xi _j}}}Y _{j\max }^2}+ \\&{{\tilde \theta }_2}\left( {{z_2}{x_2}+{{{{\dot {\hat \theta} }_2}} \mathord{\left/ {\vphantom {{{{\dot {\hat \theta} }_2}} {{\tau _2}}}} \right. } {{\tau _2}}}} \right)+{{\tilde \theta }_3}\left( {{z_3}{x_2}+{{{{\dot {\hat \theta} }_3}} \mathord{\left/ {\vphantom {{{{\dot {\hat \theta} }_3}} {{\tau _3}}}} \right. } {{\tau _3}}}} \right) + \\&{{\tilde \theta }_4}\left( {{z_3}{x_3}+{{{{\dot {\hat \theta} }_4}} \mathord{\left/ {\vphantom {{{{\dot {\hat \theta} }_4}} {{\tau _4}}}} \right. } {{\tau _4}}}} \right) .\end{split} $
(33)

同时,参数自适应律可以选择为

$ {{\dot {\hat \theta} }_2} = - {\tau _2}{x_2}{z_2},\; {{\dot {\hat \theta} }_3} = - {\tau _3}{x_2}{z_3},\; {{\dot {\hat \theta} }_4} = - {\tau _4}{x_3}{z_3}. \;$
(34)

进一步地,可以得到参数自适应函数,如式(25)所示. 将式(34)代入式(33),得到

$ \begin{split} {{\dot \chi }_3} \leqslant & - {k_1}z_1^2 - \sum\limits_{i = 1}^2 {{k_{i+1}}{{\left( {{z_{i+1}} - \frac{1}{{2{k_{i+1}}}}{{\tilde \varDelta }_i}} \right)}^2}}- \\ & \sum\limits_{i = 1}^2 {{\xi _i}{{\left( {{{\tilde \varDelta }_i} - \frac{1}{{2{\xi _i}}}{Y _i}} \right)}^2}} +\sum\limits_{i = 1}^2 {\frac{1}{{4{\xi _i}}}Y _{i\max }^2} .\end{split} $
(35)

因此,如果Lj+3>kj+1/4,z会在有限时间t1>0内落入Hr内且在t>t0的情况下保持在Hr内;进一步地,在t>t0情况下,系统的输出跟踪误差|z1|<kb, 证毕.

2.4. 闭环控制系统稳定性分析

定义Lyapunov函数为

$\begin{split} {\chi _{_\mathrm{h}}}{\text{ = }}&\frac{1}{2}\ln\; \frac{{k_{\mathrm{b}}^2}}{{k_{\mathrm{b}}^2 - z_1^2}}+\frac{{z_2^2}}{2}+\frac{{z_3^2}}{2}+\frac{{\tilde \theta _2^2}}{{2{\tau _2}}}+\frac{{\tilde \theta _3^2}}{{2{\tau _3}}}+\frac{{\tilde \theta _4^2}}{{2{\tau _4}}} +\\&\frac{{\tilde \varDelta _1^2}}{2}+\frac{{\tilde \varDelta _2^2}}{2}+\frac{{S_1^2}}{2}+\frac{{S_2^2}}{2}+\frac{{S_3^2}}{2} .\end{split} $
(36)

可以得到其对时间的导数为

$ \begin{split} {{\dot \chi }_{_\text{h}}} =& \frac{{{z_1}{{\dot z}_1}}}{{k_{\text{b}}^2 - z_1^2}}+{z_2}{{\dot z}_2}+{z_3}{{\dot z}_3}+\frac{{{{\tilde \theta }_2}{{\dot {\tilde \theta} }_2}}}{{{\tau _2}}}+\frac{{{{\tilde \theta }_3}{{\dot {\tilde \theta} }_3}}}{{{\tau _3}}}+ \\ &\frac{{{{\tilde \theta }_4}{{\dot {\tilde \theta} }_4}}}{{{\tau _4}}}+{{\tilde \varDelta }_1}{{\dot {\tilde \varDelta} }_1}+{{\tilde \varDelta }_2}{{\dot {\tilde \varDelta} }_2}+{S_1}{{\dot S}_1}+{S_2}{{\dot S}_2}+{S_3}{{\dot S}_3} .\end{split} $
(37)

基于式(11)、(13)~(15)、(18)、(22)、(24) ~(25)、(32)的结果,式(37)可以重写为

$ \begin{split} \dot{\chi}_{_\mathrm{h}}= & -k_1 z_1^2-k_2\left(z_2-\frac{1}{2 k_2} \tilde{\varDelta}_1\right)^2-k_3\left(z_3-\frac{1}{2 k_3} \tilde{\varDelta}_2\right)^2- \\& \xi_1\left(\tilde{\varDelta}_1-\frac{1}{2 \xi_1} Y_1\right)^2-\xi_2\left(\tilde{\varDelta}_2-\frac{1}{2 \xi_2} Y_2\right)^2+ \\& \frac{1}{4 \xi_1} Y_1^2+\frac{1}{4 \xi_2} Y_2^2+\tilde{\theta}_2\left(z_2 x_2+{\dot {\tilde \theta}}_2 / \tau_2\right)+ \\& \tilde{\theta}_3\left(z_3 x_2+{\dot {\tilde \theta}}_3 / \tau_3\right)+\tilde{\theta}_4\left(z_3 x_3+{\dot {\tilde \theta}}_4 / \tau_4\right)+ \\& \tilde{x}_1\left[\tilde{x}_2-L_1 \operatorname{sign}\;\tilde{x}_1\right]+ \\& \tilde{x}_2\left[\tilde{f}_1\left(\tilde{x}_2, \tilde{x}_3\right)-L_2 \operatorname{sign}\;\tilde{x}_2+\tilde{\varDelta}_1\right]+ \\&\tilde{x}_3\left[\tilde{f}_2\left(\tilde{x}_2, \tilde{x}_3\right)-L_3 \operatorname{sign}\;\tilde{x}_3+\tilde{\varDelta}_2\right] \leqslant \end{split} $

$ \begin{split} \qquad & - k_1 z_1^2-k_2\left(z_2-\frac{1}{2 k_2} \tilde{\varDelta}_1\right)^2-k_3\left(z_3-\frac{1}{2 k_3} \tilde{\varDelta}_2\right)^2- \\& \xi_1\left(\tilde{\varDelta}_1-\frac{1}{2 \xi_1} Y_1\right)^2-\xi_2\left(\tilde{\varDelta}_2-\frac{1}{2 \xi_2} Y_2\right)^2+ \\& \frac{1}{4 \xi_1} Y_{1 \max }^2+\frac{1}{4 \xi_2} Y_{2 \max }^2+\left|\tilde{x}_1\right|\left[\left|\tilde{x}_2\right|-L_1\right]+ \\& \left|\tilde{x}_2\right|\left[\gamma_1\left|\tilde{x}_2\right|+\gamma_2\left|\tilde{x}_3\right|-L_2+\left|\tilde{\varDelta}_1\right|\right]+ \\& \left|\tilde{x}_3\right|\left[\gamma_3\left|\tilde{x}_2\right|+\gamma_4\left|\tilde{x}_3\right|-L_3+\left|\tilde{\varDelta}_2\right|\right].\\[-5pt]\end{split} $
(38)

如果$ {L_1} > \left| {{{\tilde x}_2}} \right|+{\sigma _1} $, $ {L_2} > {\gamma _1}\left| {{{\tilde x}_2}} \right|+{\gamma _2}\left| {{{\tilde x}_2}} \right|+\left| {{{\tilde \varDelta }_1}} \right|+{\sigma _2} $$ {L_3} > {\gamma _3}\left| {{{\tilde x}_2}} \right|+{\gamma _4}\left| {{{\tilde x}_3}} \right|+\left| {{{\tilde \varDelta }_2}} \right|+{\sigma _3} $,可以得到

$\begin{split} {{\dot \chi }_{{\mathrm{h}}}} <& - {k_1}z_1^2 - \sum\limits_{j = 1}^2 {{k_{j+1}}{{\left( {{z_{j+1}} - \frac{1}{{2{k_{j+1}}}}{{\tilde \varDelta }_j}} \right)}^2}} - \\ &\sum\limits_{j = 1}^2 {{\xi _j}{{\left( {{{\tilde \varDelta }_j} - \frac{1}{{2{\xi _j}}}{Y _j}} \right)}^2}} - \sum\limits_{i = 1}^3 {{\sigma _i}\left| {{{\tilde x}_i}} \right|} +\sum\limits_{j = 1}^2 {\frac{1}{{4{\xi _j}}}Y _{j\max }^2} .\end{split} $
(39)

选择Lj+3>kj+1/4,使得ξj>0,加之ki>0,可以看出式(39)中只有$ \displaystyle\sum\limits_{j = 1}^2 {{{Y _{j\max }^2} \mathord{\left/ {\vphantom {{Y _{j\max }^2} \left({4{\xi _j}}\right)}} \right. } \left({4{\xi _j}}\right)}} $是正的,其他项都是负的,这些负项可以保证在正项$ \displaystyle\sum\limits_{i = 1}^2 {{{Y _{i\max }^2} \mathord{\left/ {\vphantom {{Y _{i\max }^2} \left({4{\xi _i}}\right)}} \right. } \left({4{\xi _i}}\right)}} $的作用下,整个闭环控制系统的收敛.

根据理论2,超球面Hr的大小取决于$ \displaystyle\sum\limits_{i = 1}^2 {{{Y _{i\max }^2} \mathord{\left/ {\vphantom {{Y _{i\max }^2} \left({4{\xi _i}}\right)}} \right. } \left({4{\xi _i}}\right)}} $,因此,如果提高扩张滑模观测器的控制增益L4L5和控制器的控制增益ki,可收缩超球面Hr的大小,从而保证控制器收敛;另外,如果$ {\varDelta _j} $是变化缓慢的或者是常值,其变化速率$Y_j $可能是很小的值,乃至于可认为$ {Y _j} \approx 0 $,因此,

$\begin{split} {{\dot \chi }_{{\mathrm{h}}}} <& - {k_1}z_1^2 - \sum\limits_{j = 1}^2 {{k_{j+1}}{{\left( {{z_{j+1}} - \frac{1}{{2{k_{j+1}}}}{{\tilde \varDelta }_j}} \right)}^2}} - \\ & \sum\limits_{j = 1}^2 {{\xi _j}{{\left( {{{\tilde \varDelta }_j} - \frac{1}{{2{\xi _j}}}{Y _j}} \right)}^2}} - \sum\limits_{i = 1}^3 {{\sigma _i}\left| {{{\tilde x}_i}} \right|} < 0 .\end{split} $
(40)

显然,整体闭环控制系统稳定.

3. 仿真和实验验证

为了验证所提出的控制方法的有效性,选取参考信号为yd=0.01sin (2πt) ,在仿真中给定2个集成系统不确定性ΔjΔ1=6sin (2πωt), Δ2=2×1012×sin (2πωt),验证控制系统的性能. 在实验中,系统不确定性中的参数变动Δθ1、Δθ2、Δθ3和Δθ4是模型的参数与电液伺服系统实验台真实参数的差异,摩擦力FF在液压缸的活塞杆与缸筒之间产生,结构振动和未建模特性μ是液压缸活塞杆运动带动实验台的机械结构振动以及油液的非线性等导致的,外部干扰力FL是由控制系统在力加载液压缸上施加1 V的控制信号产生的. 如表1所示为电液伺服系统的关键参数. 采用如下3种不同控制方法分别进行仿真和实验来验证本研究所提出的控制器的性能.

表 1   电液伺服系统关键参数

Tab.1  Key parameters of electro-hydraulic servo system

参数 / 单位数值
Ap / m21.88×10−3
βe / Pa6.9×108
ΔPr / Pa6×106
Ps / Pa8×106
Bp/(N·m−1·s)7500
m / kg500
Vt / m30.38×10−3
umax / V10
$q_{V_{\mathrm{r}}} $/ (L·min−1)38
Ctl / (m3·s−1·Pa−1)4.6×10−16

新窗口打开| 下载CSV


1) 反步控制器:根据状态方程,反步控制器的控制律为$ {\alpha _1} = - {k_1}{z_1}+{\dot y_{{\mathrm{d}}} } \;$$ {\alpha _2} = {\left( {{k_2}{z_2}+z{}_1+{\theta _2}{x_2}+{{\dot \alpha }_1}} \right)} \mathord{\left/ {\vphantom {{\left( {{k_2}{z_2}+z{}_1+{\theta _2}{x_2}+{{\dot \alpha }_1}} \right)} {{\theta _1}}}} \right. } {{\theta _1}} $$ {q_{V_{\mathrm{L}}}} = {{\left( {{\theta _1}{z_2}+{k_3}{z_3}+{{\dot \alpha }_2}+{\theta _3}{x_2}+{\theta _4}{x_3}} \right)} \mathord{\left/ {\vphantom {{\left( {{\theta _1}{z_2}+{k_3}{z_3}+{{\dot \alpha }_2}+{\theta _3}{x_2}+{\theta _4}{x_3}} \right)} {{\theta _5}}}} \right. } {{\theta _5}}} $. 在仿真中,控制增益选择为k1=319,k2=300,k3=300;在实验中,控制增益选择为k1=130,k2=125,k3=110.

2) 基于障碍Lyapunov函数的反步控制器:使$ {\hat \varDelta _j} = 0 $τ2=τ3=τ4=0,在仿真中,控制增益选择为k1=200,k2=1 900,k3=200;在实验中,控制增益选择为k1=130,k2=460,k3=130.

3) 基于扩张滑模观测器的鲁棒控制器(本研究所提出的控制器):基于扩张滑模观测器的估计值$ {\hat \varDelta _j} $,提出的控制器作用于电液伺服系统. 在仿真中,选择L1=110,L2=100,L3=3.3×1012L4=200,L5=150,δ1=δ2=δ3=0.01,k1=1800,k2=2500,k3=1800,τ2=τ3=τ4=2×10−15;在实验中,选择L1=10,L2=2,L3=30,L4=55,L5=6×108δ1=δ2=0.001,δ3=0.005,k1=125,k2=450,k3=125,τ2=τ3=τ4=2×10−15.

3.1. 仿真结果

均方根误差可以阐明3个控制器的性能:

$ \text { RMSE }=\left[{\sum_{i=1}^{n}\left(R_{{\rm{in}},i}-R_{{\rm{out}},i}\right)^{2} / n}\right]^{1/2}. $
(41)

式中:Rin,i为参考信号,Rout,i为系统反馈信号,n为信号的长度.

图3~5所示,分别为反步控制器、基于障碍Lyapunov函数的反步控制器、基于扩张滑模观测器的控制器(本研究所提出的控制器)的仿真结果. 可以看出,在预定干扰Δ1Δ2的作用下,传统的反步控制器已经发散,甚至不能保证系统输出按照参考轨迹运行;基于障碍Lyapunov函数的反步控制器具有较强鲁棒性,在预定干扰Δ1Δ2的作用下,可以保证系统的跟踪误差在kb=0.001 m内,但误差较大;扩张滑模观测器不仅可以估计系统的全状态,而且还可以利用扩张的状态估计集成系统不确定性,加上参数自适应律实时更新系统参数,可见本研究所提出的控制器性能优于基于障碍Lyapunov函数的反步控制器和传统的反步控制器. 3种控制器的跟踪误差峰值分别为2.1325 、9.8732×10−4 、1.7009×10−4 m,均方根误差分别为1.5077 、9.5947×10−4 、1.2117×10−4 m. 可见3种控制器的性能如下:本研究所提出的控制器>基于障碍Lyapunov函数的反步控制器>传统的反步控制器.

图 3

图 3   仿真中反步控制器的性能

Fig.3   Performance of backstepping controller in simulation study


图 4

图 4   仿真中基于障碍Lyapunov函数的反步控制器的性能

Fig.4   Performance of barrier Lyapunov function-based backstepping controller in simulation study


图 5

图 5   仿真中所提出的控制器的性能

Fig.5   Performance of proposed controller in simulation study


为了彰显所提出的控制方法的鲁棒性,在仿真中给定较大的集成系统不确定性值:Δ1=6×sin (2πωt)、Δ2=2×1012sin (2πωt),在此干扰值作用下,反步控制器甚至不能保持液压缸的活塞杆按照参考信号运行. 基于障碍Lyapunov函数的反步控制器具有较强的鲁棒性,能使系统稳定运行,但不能保证高性能. 如图5(c)~(e)所示,扩张滑模观测器完整重构了电液伺服系统状态变量xi;如图5(f)~(i)所示,观测器在重构状态变量xi之后,利用2个扩张状态重构了系统不确定性Δj,且重构误差良好;进一步,通过扩张滑模观测器估计系统不确定性Δj,并在控制器中补偿,加之参数自适应律,不仅使系统的跟踪误差小于kb,还提高了系统跟踪精度,从而进一步增强了控制器的鲁棒性.

3.2. 实验结果

图6所示为电液伺服系统实验台. 如图7所示为电液伺服系统实验台的实际控制系统. 控制系统的硬件为上位机、工控机、PCI-1716板卡、ACL-6126板卡以及信号调理系统. 位移传感器和2个油压传感器的4~20 mA电流信号由信号调理系统转换为2~10 V电压信号,最后由PCI-1716采集. 控制电压(±10 V)由板卡ACL-6126输出,并由信号调理系统转换为±40 mA电流信号来控制伺服阀,从而控制电液伺服系统运作. 基于MATLAB xPC 快速原型技术,上位机和工控机(IPC-610)通过TCP/IP网络连接. 在MATLAB/Simulink中编写好的控制程序会被转换为C程序,并通过网络下载至工控机中,来控制实验台实时运转. 整个控制系统的采样频率为1 000 Hz.

图 6

图 6   电液伺服系统实验台

Fig.6   Experimental bench for electro-hydraulic servo systems


图 7

图 7   实验台的实际控制系统

Fig.7   Real control system of experimental bench


图8~10所示为3种控制器应用于电液伺服系统实验台的实验结果. 可以看出,传统的反步控制器可以使系统输出按照参考轨迹运行,但是不能保证系统的跟踪误差小于kb=0.001 m;基于障碍Lyapunov函数的反步控制器有强的鲁棒性,可以保证系统的跟踪误差小于kb=0.001 m,然而由于系统中存在非线性因素,其跟踪误差难以达到高精度;扩张滑模观测器不仅估计了系统的全状态,还估计系统的非线性因素,加上参数自适应律实时更新系统参数,其性能显著优于基于障碍Lyapunov函数的反步控制器和传统的反步控制器的.

图 8

图 8   实验中反步控制器的性能

Fig.8   Performance of backstepping controller in experimental study


图 9

图 9   实验中基于障碍Lyapunov函数的反步控制器的性能

Fig.9   Performance of barrier Lyapunov function-based backstepping controller in experimental study


图 10

图 10   实验中所提出的控制器的性能

Fig.10   Performance of proposed controller in experimental study


3种控制器的跟踪误差峰值分别为0.0022 、4.6006×10−4 、1.0237×10−4 m,均方根误差分别为0.0012、2.3992×10−4、4.1999×10−5 m. 可见 3种控制器的性能如下:所提出的控制器>基于障碍Lyapunov函数的反步控制器>传统的反步控制器.

图8~10可知,由于电液伺服系统的系统不确定性,反步控制器和基于障碍Lyapunov函数的反步控制器,不能达到高性能的表现;扩张滑模观测器在重构系统状态变量xi后,通过扩张的2个状态重构了系统不确定性,进一步地,在补偿了系统不确定性和参数变动之后,系统的跟踪精度明显提高,验证了控制器的性能.

扩张滑模观测器在实验中实时重构出来的系统不确定性的值如下:Δ1的幅值约为[−1.5, 1.5] m/s2Δ2的幅值约为[−1.5×109, 1.5×109] N/(m2·s),明显小于仿真中给定的干扰值Δ1=6sin (2πωt) , Δ2=2×1012sin (2πωt),因此,仿真中传统的反步控制器出现了发散的状况.

在系统不确定性的作用下,在仿真和实验过程中,传统的反步控制器不能保证系统跟踪误差|z1|≤kb;基于障碍Lyapunov函数的反步控制器具有较强的鲁棒性,虽然能够使系统的跟踪误差|z1|≤kb,但难以满足高性能. 扩张滑模观测器在仿真和实验中,都展现了优良的性能,通过重构的系统不确定性,加上补偿系统参数变动,整体提高了系统鲁棒性.

4. 结 论

为了适应高性能电液伺服系统的需求,提出基于扩张滑模观测器的控制方法,利用扩张滑模观测器在线估计和补偿系统不确定性,通过系统的输出反馈设计参数自适应律,从而实时更新系统参数,最后利用障碍Lyapunov函数使系统的输出误差小于kb,达到高精度控制.

(1)考虑电液伺服系统的外部干扰力、摩擦力、参数变动、结构振动及未建模特性等系统不确定性,构建电液伺服系统状态空间模型.

(2)基于状态空间描述模型,设计五阶扩张滑模观测器,通过定义合适的滑模面证明提出的扩张滑模观测器的稳定性;利用扩张滑模观测器的系统不确定性估计值,加之参数自适应律,设计基于障碍Lyapunov函数的自适应反步控制器,并证明闭环控制系统的稳定性.

(3)仿真和实验结果表明,扩张滑模观测器可以同时估计系统的全状态和系统不确定性,所提出的控制器性能优于基于障碍Lyapunov函数的反步控制器和传统的反步控制器.

(4)本研究仅针对双出杆液压缸构建了状态空间模型,并设计了相应的控制方法,未来将进一步根据单出杆液压缸的模型,应用本研究所提出的算法进行进一步验证.

参考文献

姚文龙, 亓冠华, 池荣虎, 等

不确定受扰电液伺服系统智能自学习PID控制

[J]. 控制与决策, 2023, 38 (3): 654- 660

DOI:10.13195/j.kzyjc.2021.1001      [本文引用: 1]

YAO Wenlong, QI Guanhua, CHI Ronghu, et al

Intelligent self-learning PID control of electro-hydraulic servo system with uncertain disturbances

[J]. Control and Decision, 2023, 38 (3): 654- 660

DOI:10.13195/j.kzyjc.2021.1001      [本文引用: 1]

焦宗夏, 姚建勇. 电液伺服系统非线性控制[M]. 北京: 科学出版社, 2016: 110−153.

[本文引用: 1]

ZHU Q, HUANG D, YU B, et al

An improved method combined SMC and MLESO for impedance control of legged robots’ electro-hydraulic servo system

[J]. ISA Transactions, 2022, 130: 598- 609

DOI:10.1016/j.isatra.2022.03.009      [本文引用: 1]

ZHAO J, SHEN G, ZHU W, et al

Robust force control with a feed-forward inverse model controller for electro-hydraulic control loading systems of flight simulators

[J]. Mechatronics, 2016, 38: 42- 53

DOI:10.1016/j.mechatronics.2016.06.004      [本文引用: 1]

SHEN G, ZHU Z, LI X, et al

Real-time electro-hydraulic hybrid system for structural testing subjected to vibration and force loading

[J]. Mechatronics, 2016, 33: 49- 70

DOI:10.1016/j.mechatronics.2015.10.009      [本文引用: 1]

FENG H, MA W, YIN C, et al

Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller

[J]. Automation in Construction, 2021, 127: 103722

DOI:10.1016/j.autcon.2021.103722      [本文引用: 1]

王鑫刚, 芮光超, 丁兴亚, 等

基于干扰观测器的电液伺服系统反馈线性化滑模控制

[J]. 液压与气动, 2018, 6: 8- 13

DOI:10.11832/j.issn.1000-4858.2018.07.002      [本文引用: 1]

WANG Xingang, RUI Guangchao, DING Xingya, et al

Feedback linearization sliding mode control based on disturbance observer for electro-hydraulic servo system

[J]. Chinese Hydraulics and Pneumatics, 2018, 6: 8- 13

DOI:10.11832/j.issn.1000-4858.2018.07.002      [本文引用: 1]

YAO B, BU F, REEDY J, et al

Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments

[J]. IEEE/ASME Transactions on Mechatronics, 2000, 5 (1): 79- 91

DOI:10.1109/3516.828592      [本文引用: 4]

梅鲁海, 刘哲纬

基于开环补偿与鲁棒控制的电液位置伺服加载系统研究

[J]. 机电工程, 2022, 39 (1): 59- 64

DOI:10.3969/j.issn.1001-4551.2022.01.009      [本文引用: 1]

MEI Luhai, LIU Zhewei

Electro-hydraulic position servo loading system based on open loop compensation and robust control

[J]. Journal of Mechanical and Electrical Engineering, 2022, 39 (1): 59- 64

DOI:10.3969/j.issn.1001-4551.2022.01.009      [本文引用: 1]

FENG H, SONG Q, MA S, et al

A new adaptive sliding mode controller based on the RBF neural network for an electro-hydraulic servo system

[J]. ISA Transactions, 2022, 129: 472- 484

DOI:10.1016/j.isatra.2021.12.044      [本文引用: 1]

YANG G

Dual extended state observer-based backstepping control of electro-hydraulic servo systems with time-varying output constraints

[J]. Transactions of the Institute of Measurement and Control, 2020, 42 (5): 1070- 1080

DOI:10.1177/0142331219883056      [本文引用: 3]

DING X, SHEN G, LI X, et al. Delay compensation position tracking control of electro-hydraulic servo systems based on a delay observer [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering , 2020, 234(5): 622−633.

[本文引用: 1]

董振乐, 杨英浩, 姚建勇, 等

匹配和不匹配干扰共存时电液伺服系统预设性能渐近跟踪控制

[J]. 中国机械工程, 2022, 33 (20): 2437- 2443

[本文引用: 2]

DONG Lezhen, YANG Yinghao, YAO Jianyong, et al

Asymptotic prescribed performance tracking control of electro-hydraulic servo systems under matched and unmatched disturbances

[J]. China Mechanical Engineering, 2022, 33 (20): 2437- 2443

[本文引用: 2]

WON D, KIM W, SHIN D, et al

High-gain disturbance observer-based backstepping control with output tracking error constraint for electro-hydraulic systems

[J]. IEEE Transactions on Control Systems Technology, 2014, 23 (2): 787- 795

[本文引用: 3]

GINOYA D, SHENDGE P D, PHADKE S B

Disturbance observer based sliding mode control of nonlinear mismatched uncertain systems

[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 26 (1−3): 98- 107

DOI:10.1016/j.cnsns.2015.02.008      [本文引用: 2]

王云飞, 赵继云, 曹超

基于双干扰观测器的非对称缸电液系统位置控制

[J]. 中南大学学报:自然科学版, 2021, 52 (11): 3864- 3871

[本文引用: 2]

WANG Yunfei, ZHAO Jiyun, CAO Chao

Position control of asymmetric cylinder electro-hydraulic system based on dual disturbance observer

[J]. Journal of Central South University: Science and Technology, 2021, 52 (11): 3864- 3871

[本文引用: 2]

YAO J, JIAO Z, MA D

Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping

[J]. IEEE Transactions on Industrial Electronics, 2014, 61 (11): 6285- 6293

DOI:10.1109/TIE.2014.2304912      [本文引用: 1]

GUO Q, ZHANG Y, CELLER B, et al

Backstepping control of electro-hydraulic system based on extended-state-observer with plant dynamics largely unknown

[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (11): 6909- 6920

DOI:10.1109/TIE.2016.2585080     

WON D, KIM W, TOMIZUKA M

Nonlinear control with high-gain extended state observer for position tracking of electro-hydraulic systems

[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25 (6): 2610- 2621

DOI:10.1109/TMECH.2020.2985619      [本文引用: 2]

QIAO Z, SHI T, WANG Y, et al

New sliding-mode observer for position sensorless control of permanent-magnet synchronous motor

[J]. IEEE Transactions on Industrial Electronics, 2012, 60 (2): 710- 719

[本文引用: 1]

XIE W F

Sliding-mode-observer-based adaptive control for servo actuator with friction

[J]. IEEE Transactions on Industrial Electronics, 2007, 54 (3): 1517- 1527

DOI:10.1109/TIE.2007.894718      [本文引用: 1]

ZHANG J, SHI P, LIN W

Extended sliding mode observer based control for Markovian jump linear systems with disturbances

[J]. Automatica, 2016, 70: 140- 147

DOI:10.1016/j.automatica.2016.03.020      [本文引用: 1]

ZHANG X, LI Z

Sliding-mode observer-based mechanical parameter estimation for permanent magnet synchronous motor

[J]. IEEE Transactions on Power Electronics, 2015, 31 (8): 5732- 5745

[本文引用: 1]

KIM H W, KWON Y W, PARK S M, et al. Parameter estimation of SPMSM using adaptive filter and extended sliding-mode observer [C]// 2019 IEEE 15th International Conference on Control and Automation . [s.l.]: IEEE, 2019: 702-707.

[本文引用: 1]

ZANG W, ZHANG Q, SHEN G, et al

Extended sliding mode observer based robust adaptive backstepping controller for electro-hydraulic servo system: theory and experiment

[J]. Mechatronics, 2022, 85: 102841

DOI:10.1016/j.mechatronics.2022.102841      [本文引用: 3]

DAO H V, AHN K K

Extended sliding mode observer-based admittance control for hydraulic robots

[J]. IEEE Robotics and Automation Letters, 2022, 7 (2): 3992- 3999

DOI:10.1109/LRA.2022.3147244      [本文引用: 1]

NGUYEN M H, DAO H V, AHN K K

Extended sliding mode observer-based high-accuracy motion control for uncertain electro-hydraulic systems

[J]. International Journal of Robust and Nonlinear Control, 2023, 33 (2): 1351- 1370

DOI:10.1002/rnc.6421      [本文引用: 1]

/