|
|
|
| Adaptive graph attention Transformer for dynamic traffic flow prediction |
Yuxuan LIU1,2( ),Yizhi LIU1,2,*( ),Zhuhua LIAO1,2,Zhengbiao ZOU1,2,Jingxin TANG1,2 |
1. School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China 2. Hunan Key Laboratory for Service Computing and Novel Software Technology, Hunan University of Science and Technology, Xiangtan 411201, China |
|
|
|
Abstract Existing traffic flow prediction models based on graph neural networks and attention mechanisms have shortcomings in capturing complex spatiotemporal dependencies, overcoming the constraints of predefined graph structures, and modeling periodic patterns. Thus, a multi-scale adaptive graph attention Transformer (MSAGAFormer) was proposed. Short-, medium-, and long-term historical traffic data were divided into low-, medium-, and high-scale temporal sequences, and a compression mechanism was employed to reduce redundant information and enhance the efficiency of temporal feature representation. A spatiotemporal embedding method was designed to encode node positions and temporal attributes, thereby strengthening the model’s capability to interpret spatiotemporal data. A GAT-based multi-head attention mechanism was utilized in the spatial layer to model dynamic spatial correlations, while a multi-scale temporal attention structure was incorporated in the temporal layer to capture dynamic variations across different temporal granularities. Experimental results on the PEMS datasets demonstrated that MSAGAFormer outperformed state-of-the-art models such as Trendformer, ATST-GCN, and STTN in prediction accuracy.
|
|
Received: 29 October 2024
Published: 25 November 2025
|
|
|
| Fund: 教育部人文社会科学研究规划基金资助项目(24YJAZH237);湖南省重点研发计划资助项目 (2023SK2081); 湖南省自然科学基金资助项目(2024JJ5163);湖南省教育厅科学研究重点资助项目(22A0341). |
|
Corresponding Authors:
Yizhi LIU
E-mail: lyx_research@sina.cn;yizhi_liu@sina.cn
|
面向动态交通流量预测的自适应图注意Transformer
针对现有基于图神经网络和注意力机制的交通流预测模型在处理复杂时空相关性、克服预定义图结构局限性以及捕捉周期性特征方面的不足,提出多时间尺度自适应图注意Transformer(MSAGAFormer)模型. 该模型将短期、中期和长期历史交通数据各自细分为低、中、高3种不同时间尺度的数据序列,并采用压缩机制以降低冗余信息、提升时序特征的表达效率. 通过设计时空嵌入方法对节点位置与时间特征进行编码,强化模型对时空数据的理解. 空间层采用基于GAT的多头注意力机制以建模动态空间相关性,时间层引入多尺度时间注意力结构以捕获不同时间粒度下的动态变化特征. 在PEMS数据集上的实验结果显示,MSAGAFormer在预测精度上优于目前较为先进的Trendformer、ATST-GCN、STTN等模型.
关键词:
智能交通系统,
交通流量预测,
Transformer,
自适应图,
多时间尺度
|
|
| [1] |
NAHELIYA B, REDHU P, KUMAR K A review on developments in evolutionary computation approaches for road traffic flow prediction[J]. Archives of Computational Methods in Engineering, 2025, 32 (3): 1499- 1523
doi: 10.1007/s11831-024-10189-1
|
|
|
| [2] |
GOMES B, COELHO J, AIDOS H A survey on traffic flow prediction and classification[J]. Intelligent Systems with Applications, 2023, 20: 200268
doi: 10.1016/j.iswa.2023.200268
|
|
|
| [3] |
ZHANG S, TONG H, XU J, et al Graph convolutional networks: a comprehensive review[J]. Computational Social Networks, 2019, 6 (1): 11
doi: 10.1186/s40649-019-0069-y
|
|
|
| [4] |
SUN C, LI C, LIN X, et al Attention-based graph neural networks: a survey[J]. Artificial Intelligence Review, 2023, 56 (2): 2263- 2310
|
|
|
| [5] |
LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting [C]// 6th International Conference on Learning Representations. Vancouver: MIT Press, 2018: 1−16.
|
|
|
| [6] |
ZHAO L, SONG Y, ZHANG C, et al T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (9): 3848- 3858
doi: 10.1109/TITS.2019.2935152
|
|
|
| [7] |
YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting [C]// 27th International Joint Conference on Artificial Intelligence. Stockholm: International Joint Conferences on Artificial Intelligence Organization, 2018: 3634−3640.
|
|
|
| [8] |
ZUO J, ZEITOUNI K, TAHER Y, et al Graph convolutional networks for traffic forecasting with missing values[J]. Data Mining and Knowledge Discovery, 2023, 37 (2): 913- 947
doi: 10.1007/s10618-022-00903-7
|
|
|
| [9] |
SHIN Y, YOON Y PGCN: progressive graph convolutional networks for spatial–temporal traffic forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25 (7): 7633- 7644
doi: 10.1109/TITS.2024.3349565
|
|
|
| [10] |
YU W, HUANG X, QIU Y, et al GSTC-Unet: a U-shaped multi-scaled spatiotemporal graph convolutional network with channel self-attention mechanism for traffic flow forecasting[J]. Expert Systems with Applications, 2023, 232: 120724
doi: 10.1016/j.eswa.2023.120724
|
|
|
| [11] |
XU M, DAI W, LIU C, et al. Spatial-temporal transformer networks for traffic flow forecasting [EB/OL]. (2021−05−29). https://arxiv.org/abs/2001.02908.pdf.
|
|
|
| [12] |
JIANG J, HAN C, ZHAO W X, et al PDFormer: propagation delay-aware dynamic long-range transformer for traffic flow prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37 (4): 4365- 4373
doi: 10.1609/aaai.v37i4.25556
|
|
|
| [13] |
WU H, XU J, WANG J, et al Autoformer: decomposition transformers with auto-correlation for long-term series forecasting[J]. Advances in Neural Information Processing Systems, 2021, 34: 22419- 22430
|
|
|
| [14] |
BAI J, ZHU J, SONG Y, et al A3T-GCN: attention temporal graph convolutional network for traffic forecasting[J]. ISPRS International Journal of Geo-Information, 2021, 10 (7): 485
doi: 10.3390/ijgi10070485
|
|
|
| [15] |
REN Q, LI Y, LIU Y Transformer-enhanced periodic temporal convolution network for long short-term traffic flow forecasting[J]. Expert Systems with Applications, 2023, 227: 120203
doi: 10.1016/j.eswa.2023.120203
|
|
|
| [16] |
GAO M, DU Z, QIN H, et al Dynamic multi-scale spatial-temporal graph convolutional network for traffic flow prediction[J]. Knowledge-Based Systems, 2024, 305: 112586
doi: 10.1016/j.knosys.2024.112586
|
|
|
| [17] |
CAI W, LIANG Y, LIU X, et al MSGNet: learning multi-scale inter-series correlations for multivariate time series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38 (10): 11141- 11149
doi: 10.1609/aaai.v38i10.28991
|
|
|
| [18] |
LUO Q, HE S, HAN X, et al LSTTN: a long-short term transformer-based spatiotemporal neural network for traffic flow forecasting[J]. Knowledge-Based Systems, 2024, 293: 111637
doi: 10.1016/j.knosys.2024.111637
|
|
|
| [19] |
WANG B, WANG J ST-MGAT: spatio-temporal multi-head graph attention network for Traffic prediction[J]. Physica A: Statistical Mechanics and its Applications, 2022, 603: 127762
doi: 10.1016/j.physa.2022.127762
|
|
|
| [20] |
汪鸣, 彭舰, 黄飞虎 基于多时间尺度时空图网络的交通流量预测模型[J]. 计算机科学, 2022, 49 (8): 40- 48 WANG Ming, PENG Jian, HUANG Feihu Multi-time scale spatial-temporal graph neural network for traffic flow prediction[J]. Computer Science, 2022, 49 (8): 40- 48
|
|
|
| [21] |
HAN L, DU B, SUN L, et al. Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting [C]// 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. [S. l. ]: ACM, 2021: 547−555.
|
|
|
| [22] |
HUANG L, ZHU F, LI Z. Trendformer: trend adaptive transformer for traffic flow prediction [C]// 5th International Conference on Data Science and Information Technology. Shanghai: IEEE, 2022: 1–6.
|
|
|
| [23] |
邹正标, 刘毅志, 廖祝华, 等 动态交通流量预测的时空注意力图卷积网络[J]. 山东大学学报: 工学版, 2024, 54 (5): 50- 61 ZOU Zhengbiao, LIU Yizhi, LIAO Zhuhua, et al Attention-based spatio-temporal graph convolutional network for dynamic traffic flow prediction[J]. Journal of Shandong University: Engineering Science, 2024, 54 (5): 50- 61
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|