Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (12): 2527-2538    DOI: 10.3785/j.issn.1008-973X.2025.12.007
    
An efficient image dehazing algorithm with Agent Attention for domain feature interaction
Yan YANG(),Cunpeng JIA
School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Download: HTML     PDF(6734KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An efficient image dehazing algorithm incorporating Agent Attention and domain feature interaction was developed to address Swin Transformer’s limitations in balancing global dependencies with computational complexity and capturing adequate detail information for image dehazing tasks. The multi-head self-attention was replaced with Agent Attention to construct an encoder-decoder network based on Agent Swin Transformer and Efficient Multi-Scale Attention as fundamental units. This architectural modification reduced the model’s computational complexity while simultaneously enhancing information flow between spatial and channel features. A high-frequency spatial enhancement module and a low-frequency channel enhancement module were designed to reduce spatial feature redundancy and improve the effectiveness of frequency-domain information while extracting features, and spatial domain features were compensated via skip connections. A fast Fourier convolution dense residual structure was constructed in the intermediate layers of the encoder to utilize spectral information for enhancing visual restoration effects. Experiments showed that the proposed algorithm could reduce the model’s computational complexity and feature redundancy, significantly enhance inference speed, restore image detail textures while maintaining their integrity, and achieve superior performance across various objective metrics.



Key wordsimage dehazing      Agent Swin Transformer      efficient multi-scale attention      wavelet transform      feature enhancement     
Received: 05 December 2024      Published: 25 November 2025
CLC:  TP 391.4  
Fund:  国家自然科学基金资助项目(61561030,62063014);甘肃省高等学校产业支撑计划资助项目(2021CYZC-04);兰州交通大学研究生教改项目(JG201928).
Cite this article:

Yan YANG,Cunpeng JIA. An efficient image dehazing algorithm with Agent Attention for domain feature interaction. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2527-2538.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.12.007     OR     https://www.zjujournals.com/eng/Y2025/V59/I12/2527


代理注意力下域特征交互的高效图像去雾算法

针对Swin Transformer在图像去雾任务中难以平衡全局依赖关系与计算复杂度、细节信息捕获能力不足的问题,提出代理注意力下域特征交互的高效图像去雾算法. 以代理注意力替换多头自注意力,构建以代理Swin Transformer和高效多尺度注意力为基本单元的编解码网络,在降低模型计算复杂度的同时增强空间和通道特征之间的信息流动. 设计高频空间增强模块和低频通道增强模块,在特征提取的同时减少空间特征冗余,提高频域信息的有效性,并以跳跃连接的方式对空间域特征进行补偿. 在编码器中间层构造快速傅里叶卷积密集残差结构,利用频谱信息提升图像恢复视觉效果. 实验表明,所提算法可以降低模型计算复杂度和特征冗余,显著提升推理速度,且恢复图像的细节纹理完整,各项客观指标均较优.


关键词: 图像去雾,  代理Swin Transformer,  高效多尺度注意力,  小波变换,  特征增强 
Fig.1 Overall dehazing network framework diagram
Fig.2 Multi-head self-attention under different computational paradigms
Fig.3 Network structure of efficient multi-scale attention(EMA)
Fig.4 Schematic diagram of wavelet transform
Fig.5 Structure of high-frequency spatial enhancement module(HSEM)
Fig.6 Structure of low-frequency channel enhancement module (LCEM)
Fig.7 Structure of fast Fourier convolution residual block (FFCR)
Fig.8 Recovery results of different algorithms on SOTS dataset
Fig.9 Recovery results of different algorithms on NH-HAZE test set
Fig.10 Recovery results of different algorithms on O-HAZE dataset
Fig.11 Recovery results of different algorithms on I-HAZE dataset
Fig.12 Recovery results of different algorithms on real set
算法SOTS-indoorSOTS-outdoorNH-HAZEO-HAZEI-HAZE
PSNR/dBSSIMPSNR/dBSSIMPSNR/dBSSIMPSNR/dBSSIMPSNR/dBSSIM
GCA-Net25.340.926126.190.900423.030.730418.830.708914.930.6403
SGID22.630.876224.970.851422.810.726517.250.653616.510.6953
UCL23.760.897324.350.876121.980.701318.860.673516.790.7162
DEA-Net27.270.944128.110.926324.450.826419.730.801518.310.7616
GridDehazeNet24.720.916125.350.874920.120.711919.920.686317.630.7211
EPDN23.060.871825.570.863021.420.727117.630.706216.050.6956
Dehazeformer25.540.921326.930.942024.960.850520.130.786418.460.7546
本研究算法26.710.931028.590.961326.890.901421.750.798219.720.7825
Tab.1 Evaluation metrics of different algorithms on different test sets
算法NP/106FLOPs/109t/s
GCA-Net2.6862.960.163
SGID13.87625.610.416
UCL19.45183.340.204
DEA-Net3.65128.920.179
GridDehazeNet0.9685.710.211
EPDN17.3819.200.185
Dehazeformer2.5193.990.244
本研究算法2.7497.640.158
Tab.2 Comparison of number and complexity of parameters
Fig.13 Training loss variations under different settings
ModelAgent
attention
EMAHSEMLCEMFFCRPSNR/dBSSIM
A23.840.8505
B24.560.8546
C24.930.8693
D26.140.8753
E25.160.8931
F26.410.8893
G
(本研究模型)
26.890.9014
Tab.3 Ablation comparison of dehazing performance
Fig.14 Subjective comparison of ablation experiments
ModelNP/106FLOPs/109t/s
13.23138.340.287
23.21135.310.184
32.84110.760.177
42.76102.430.163
5(本研究算法)2.7497.640.158
Tab.4 Ablation comparison of dehazing efficiency
[1]   贾童瑶, 卓力, 李嘉锋, 等 基于深度学习的单幅图像去雾研究进展[J]. 电子学报, 2023, 51 (1): 231- 245
JIA Tongyao, ZHUO Li, LI Jiafeng, et al Research advances on deep learning based single image dehazing[J]. Acta Electronica Sinica, 2023, 51 (1): 231- 245
[2]   PIZER S M, AMBURN E P, AUSTIN J D, et al Adaptive histogram equalization and its variations[J]. Computer Vision, Graphics, and Image Processing, 1987, 39 (3): 355- 368
doi: 10.1016/S0734-189X(87)80186-X
[3]   GROSSMANN A, MORLET J Decomposition of hardy functions into square integrable wavelets of constant shape[J]. SIAM Journal on Mathematical Analysis, 1984, 15 (4): 723- 736
doi: 10.1137/0515056
[4]   LAND E H, MCCANN J J Lightness and retinex theory[J]. JOSA, 1971, 61 (1): 1- 11
doi: 10.1364/JOSA.61.000001
[5]   HE K, SUN J, TANG X. Single image haze removal using dark channel prior [C]// IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 1956–1963.
[6]   MENG G, WANG Y, DUAN J, et al. Efficient image dehazing with boundary constraint and contextual regularization [C]// IEEE International Conference on Computer Vision. Sydney: IEEE, 2013: 617–624.
[7]   ZHU Q, YANG S, XIE Y. An improved single image haze removal algorithm based on dark channel prior and histogram specification [C]// 3rd International Conference on Multimedia Technology (ICMT-13). Beijing: Atlantis Press, 2013: 279−292.
[8]   BERMAN D, TREIBITZ T, AVIDAN S. Non-local image dehazing [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1674–1682.
[9]   WANG W, YUAN X, WU X, et al Fast image dehazing method based on linear transformation[J]. IEEE Transactions on Multimedia, 2017, 19 (6): 1142- 1155
doi: 10.1109/TMM.2017.2652069
[10]   LI D, TANG G, ZHAO L, et al. Single I mage haze removal based on concentration scale prior [C]// 5th International Conference on Computer and Communication Systems. Shanghai: IEEE, 2020: 309–313.
[11]   LI B, PENG X, WANG Z, et al. AOD-net: all-in-one dehazing network [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4780–4788.
[12]   CHEN D, HE M, FAN Q, et al. Gated context aggregation network for image dehazing and deraining [C]// IEEE Winter Conference on Applications of Computer Vision. Waikoloa Village: IEEE, 2019: 1375−1383.
[13]   BAI H, PAN J, XIANG X, et al Self-guided image dehazing using progressive feature fusion[J]. IEEE Transactions on Image Processing, 2022, 31: 1217- 1229
doi: 10.1109/TIP.2022.3140609
[14]   ZHOU H, DONG W, LIU Y, et al. Breaking through the haze: an advanced non-homogeneous dehazing method based on fast Fourier convolution and ConvNeXt [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Vancouver: IEEE, 2023: 1895–1904.
[15]   WANG Y, YAN X, WANG F L, et al UCL-dehaze: toward real-world image dehazing via unsupervised contrastive learning[J]. IEEE Transactions on Image Processing, 2024, 33: 1361- 1374
doi: 10.1109/TIP.2024.3362153
[16]   CHEN Z, HE Z, LU Z M DEA-net: single image dehazing based on detail-enhanced convolution and content-guided attention[J]. IEEE Transactions on Image Processing, 2024, 33: 1002- 1015
doi: 10.1109/TIP.2024.3354108
[17]   SONG Y, HE Z, QIAN H, et al Vision transformers for single image dehazing[J]. IEEE Transactions on Image Processing, 2023, 32: 1927- 1941
doi: 10.1109/TIP.2023.3256763
[18]   HAN D, YE T, HAN Y, et al. Agent attention: on the integration of softmax and linear attention [C]// European Conference on Computer Vision. [S. l. ]: Springer, 2024: 124–140.
[19]   OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning [C]// ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Rhodes: IEEE, 2023: 1–5.
[20]   WU Y, HE K. Group normalization [C]// Proceedings of the European Conference on Computer Vision (ECCV). Munich: Springer, 2018: 3−19.
[21]   LI J, WEN Y, HE L. SCConv: spatial and channel reconstruction convolution for feature redundancy [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 6153–6162.
[22]   ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake: IEEE, 2018: 6848–6856.
[23]   ZHANG T, QI G J, XIAO B, et al. Interleaved group convolutions [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4383–4392.
[24]   ZHANG Q, WU Y N, ZHU S C. Interpretable convolutional neural networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake: IEEE, 2018: 8827–8836.
[25]   CHI L, JIANG B, MU Y Fast Fourier convolution[J]. Advances in Neural Information Processing Systems, 2020, 33: 4479- 4488
[26]   KINGA D, ADAM J B. A method for stochastic optimization [C]// International Conference on Learning Representations (ICLR). San Diego: [s. n. ], 2015: 5−6.
[27]   LI B, REN W, FU D, et al. Benchmarking single image dehazing and beyond [J]. IEEE Transactions on Image Processing, 2018.
[28]   ANCUTI C O, ANCUTI C, TIMOFTE R. NH-HAZE: an image dehazing benchmark with non-homogeneous hazy and haze-free images [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle. IEEE, 2020: 1798–1805.
[29]   HE T, ZHANG Z, ZHANG H, et al. Bag of tricks for image classification with convolutional neural networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 558–567.
[30]   ANCUTI C O, ANCUTI C, TIMOFTE R, et al. O-haze: a dehazing benchmark with real hazy and haze-free outdoor images [C]// IEEE Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake: IEEE, 2018: 754–762.
[31]   ANCUTI C, ANCUTI C O, TIMOFTE R, et al. I-HAZE: A dehazing benchmark with real hazy and haze-free indoor images [C]// Advanced Concepts for Intelligent Vision Systems: 19th International Conference. Poitiers: Springer International Publishing, 2018: 620−631.
[32]   GIRSHICK R. Fast R-CNN [EB/OL]. (2015−04−30) [2024−10−15]. https://arxiv.org/abs/1504.08083.
[33]   WANG Z, BOVIK A C, SHEIKH H R, et al Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612
doi: 10.1109/TIP.2003.819861
[34]   JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution [C]// Computer Vision–ECCV 2016: 14th European Conference. Cham: Springer, 2016: 694–711.
[35]   LIU X, MA Y, SHI Z, et al. GridDehazeNet: attention-based multi-scale network for image dehazing [C]// IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 7313−7322.
[1] Wenhu HUANG,Xing ZHAO,Liang XIE,Haoran LIANG,Ronghua LIANG. Contrastive learning-based sound source localization-guided audio-visual segmentation model[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1803-1813.
[2] Jizhong DUAN,Haiyuan LI. Multi-scale parallel magnetic resonance imaging reconstruction based on variational model and Transformer[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1826-1837.
[3] Yue HOU,Tiantian WANG,Xin ZHANG,Jie YIN. Traffic flow forecasting with multi-resolution trend period decoupling interaction[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1362-1372.
[4] Yan YANG,Lipeng CHAO. A two-branch feature joint dehazing network based on multidimensional collaborative attention[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1119-1129.
[5] Qincheng JIANG,Jianfeng TAO,Yangyang WANG,Yulei ZHANG,Chengliang LIU. EWT-LSTM based industrial robot joint anomaly detection[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 982-994.
[6] Xiaozhe MENG,Yuxin FENG,Zhuo SU,Fan ZHOU. Real-world dehazing method with invariant learning[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 268-278.
[7] Bingyang ZHU,Jianfeng WU,Ke WANG,Zhangquan WANG,Banteng LIU. Sleep staging based on single-channel ECG signal and INFO-ABCLogitBoost model[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2547-2555.
[8] Ling-wei ZHANG,Zheng-dong ZHOU,Yun-fei XU,Jia-wen WANG,Wen-tao JI,Ze-feng SONG. Classification of imagined speech EEG signals based on feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 726-734.
[9] Hong-da CHENG,Hai-ming LUO,Qing-chao XIA,Can-jun YANG. Recognition of images for underwater vehicle based on improved γ-CLAHE algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1648-1655.
[10] Zhu-peng WEN,Jie CHEN,Lian-hua LIU,Ling-ling JIAO. Fault diagnosis of wind power gearbox based on wavelet transform and improved CNN[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1212-1219.
[11] Pei-zhi WEN,Jun-mou CHEN,Yan-nan XIAO,Ya-yuan WEN,Wen-ming HUANG. Underwater image enhancement algorithm based on GAN and multi-level wavelet CNN[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 213-224.
[12] Yu XIE,Zi-qun BAO,Na ZHANG,Biao WU,Xiao-mei TU,Xiao-an BAO. Object detection algorithm based on feature enhancement and deep fusion[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2403-2415.
[13] Ming LI,Li-juan DUAN,Wen-jian WANG,Qing EN. Brain functional connections classification method based on significant sparse strong correlation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2232-2240.
[14] Jia-cheng LIU,Jun-zhong JI. Classification method of fMRI data based on broad learning system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1270-1278.
[15] Pu ZHENG,Hong-yang BAI,Wei LI,Hong-wei GUO. Small target detection algorithm in complex background[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1777-1784.