Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (12): 2547-2555    DOI: 10.3785/j.issn.1008-973X.2024.12.014
    
Sleep staging based on single-channel ECG signal and INFO-ABCLogitBoost model
Bingyang ZHU1,2(),Jianfeng WU2,*(),Ke WANG2,3,Zhangquan WANG2,Banteng LIU2
1. School of Information Engineering, Huzhou University, Huzhou 313000, China
2. College of Information Science and Technology, Zhejiang Shuren University, Hangzhou 310015, China
3. State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1139KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A simple and efficient sleep analysis algorithm was designed based on single-channel electrocardiogram (ECG) signals, in order to reduce the dependence on polysomnography (PSG) system. First, maximum overlap discrete wavelet transform(MODWT)was used to perform multi-resolution analysis on the original signal, then to furture extract peak information. Then, the multi-dimensional heart rate variability(HRV)features were extracted based on the first-order deviation of the peak position. To further screen the HRV features with a strong correlation with different sleep stages, a feature extraction method was proposed based on the ReliefF algorithm and Gini index. On this basis, the INFO-ABCLogitBoost method was used to mine the correlation between HRV and different sleep stages, thereby achieving a fine classification of sleep stages. Experimental results on actual public data sets showed that the proposed model had an overall accuracy of 83.67%, an accuracy rate of 82.59%, a Kappa coefficient of 77.94%, and an F1-Score value of 82.97% in the sleep staging task. Compared with conventional models in sleep staging tasks, the proposed method shows more efficient and convenient sleep quality assessment performance, which helps realize sleep monitoring in home or mobile medical scenarios.



Key wordssleep analysis      electrocardiogram (ECG)      maximum overlap discrete wavelet transform (MODWT)      heart rate variability (HRV)      INFO-ABCLogitBoost     
Received: 16 November 2023      Published: 25 November 2024
CLC:  TP 391  
Fund:  浙江省自然科学基金资助项目(LY20H090001,LQ23F030002);浙江省“领雁”研发攻关计划资助项目(2022C03122);浙江大学工业控制技术国家重点实验室开放课题资助项目(ICT2022B34).
Corresponding Authors: Jianfeng WU     E-mail: zhubingyang2024@163.com;wujianfeng@zjsru.edu.cn
Cite this article:

Bingyang ZHU,Jianfeng WU,Ke WANG,Zhangquan WANG,Banteng LIU. Sleep staging based on single-channel ECG signal and INFO-ABCLogitBoost model. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2547-2555.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.12.014     OR     https://www.zjujournals.com/eng/Y2024/V58/I12/2547


基于单通道ECG信号与INFO-ABCLogitBoost模型的睡眠分期

为了减少对传统多导睡眠图(PSG)系统的依赖,基于单通道心电图(ECG)信号,设计了一种简单高效的睡眠分析算法. 采用最大重叠离散小波变换(MODWT)对原始信号进行多分辨分析,再进一步提取峰值信息;根据峰值位置的一阶偏差,提取多维度的心率变异性(HRV)特征. 为了进一步筛选与不同睡眠阶段具有强关联性的HRV特征,提出基于ReliefF算法与Gini指数的特征提取方法. 在此基础上,采用INFO-ABCLogitBoost方法挖掘HRV与不同睡眠阶段之间的关联性,从而实现睡眠阶段的精细分类. 在实际公开数据集上的实验结果表明,所提出的模型在睡眠分期任务中,总体精度为83.67%,准确率为82.59%,Kappa系数为77.94%,F1-Score为82.97%. 相比于睡眠分期任务中的常规模型,所提方法展现出更加高效便捷的睡眠质量评估性能,有助于实现家庭或移动医疗场景下的睡眠监测.


关键词: 睡眠分析,  心电图(ECG),  最大重叠离散小波变换(MODWT),  心率变异性(HRV),  INFO-ABCLogitBoost 
Fig.1 Diagram of automatic sleep stage classification method based on INFO-ABCLogitBoost model
Fig.2 Visualization of reconstructed original ECG signal
Fig.3 Visualization of R-peak feature extraction
睡眠阶段Ns/个Ps/%
W3 94828.88
REM1 87713.73
NREM11 29609.48
NREM24 70034.39
NREM31 84713.51
总体13 668100.00
Tab.1 Statistical analysis of sample counts for each sleep stage in HMC dataset
数据类别Nn/条Ns/个
No pathology55 114
NFLE55 178
RBD55 596
PLM54 726
SDB42 687
Insomnia55 813
Narcolepsy55 516
Tab.2 Statistical analysis of sample counts for each sleep stage in CAP dataset
特征n/个
时域特征28
MeanNN、MedianNN、ModeNN
MaxNN、MinNN、MadNN
6
RMSSD、SDNN、SDSD、CVNN、CVSD、RMSA6
SDANN1、SDANN2、SDANN5
SDNNI1、SDNNI2、SDNNI5
6
NN20、PNN20、NN50、PNN504
MeanHR、MinHR、MaxHR、StdHR4
TINN、HTI2
频域特征24
LF、HF、MF、TF、VLF、TLF、ULF、Ttlpwr8
LFf、HFf、MFf、TFf、TLFf5
LFn、HFn、MFn、TLFn4
LFHF、MFLF、TLFLF3
pHF、pLF2
HFmaxf、HFamp2
庞加莱图几何7
SD1、SD2、SD1SD2、S4
CVI、CSI、CSI_Modified3
心率碎片指数17
PIP、SI、AI、GI、C1d、C1a、SD1d、SD1a、C2d、C2a
SD2d、SD2a、SD2I、Cd、Ca、SDNNd、SDNNa
17
复杂度指数1
SampEn1
Tab.3 HRV feature statistics extracted from sleep stage task
Fig.4 Mean and standard deviation of importance of HRV features calculated based on Gini index
Fig.5 Mean and standard deviation of HRV feature weights calculated based on ReliefF algorithm
算法n/个t/minACC/%Kappa/%F1/%
77632.9582.4376.2281.39
Gini52379.0683.3577.5182.66
ReliefF38261.8383.6777.9482.97
Tab.4 Experimental results of feature dimensionality reduction
方法ACC/%PRE/%Kappa/%F1/%
ELM65.7665.4253.8165.37
SVM69.8968.4058.4367.98
GRU70.7168.8359.8469.05
LSTM70.6468.8559.6668.91
BiLSTM71.4969.7761.0370.06
CNN72.2671.9762.7472.08
CNN-LSTM72.0571.4562.3971.65
ResNet73.5473.2864.4873.34
XGBoost70.7168.8359.8469.05
Bag79.1377.8971.6578.19
RF80.3779.1073.3879.45
GBDT80.7379.4373.9079.82
本研究83.6782.5977.9482.97
Tab.5 Test results of performance of sleep stage classification model
方法Recall/%
NREM1NREM2NREM3REMW
ELM18.7774.5961.7063.3171.67
SVM11.1480.6662.9155.4083.55
GRU12.0278.7361.0164.3985.07
LSTM12.3278.5261.7061.1586.12
BiLSTM14.9677.8764.1265.4785.87
CNN25.8176.1672.9667.8182.26
CNN-LSTM24.6877.0568.0165.3384.71
ResNet26.4177.4871.2870.6784.71
XGBoost12.0278.7361.0164.3985.07
Bag24.6385.0876.7875.9089.89
RF24.9385.8779.3878.7890.53
GBDT25.2285.9481.8079.5090.13
本研究29.0389.0886.3183.2791.49
Tab.6 Recall rates of models for different sleep stages in sleep staging task
数据类别ACC/%PRE/%Kappa/%F1/%
No pathology86.7886.2881.1086.19
NFLE77.9477.7668.2177.31
RBD88.0788.1683.5287.98
PLM85.7885.8979.7185.40
SDB74.6373.9758.3273.09
Insomnia87.9888.0982.4687.72
Narcolepsy84.2283.9079.1183.76
Tab.7 Validation results of samples from different categories
文献方法睡眠阶段ACC/%Kappa/%F1/%
[8]GRU380.4380.07
[9]LSTM477.0061.00
[10]BiLSTM475.9060.00
[11]CNN491.7288.4488.50
[12]CNN-
LSTM
572.5458.5070.10
[13]GBDT582.0272.88
[14]ResNet5
4
77.34
85.32
67.58
77.11
68.03
81.87
[15]RF575.9066.3076.00
[16]PSO-
ELM
6
4
62.66
71.52


本研究INFO-
ABC-
LogitBoost
583.6777.9482.97
Tab.8 Comparison of advanced research results with results of proposed model
[1]   PANDA S, HOGENESCH J B, KAY S A Circadian rhythms from flies to human[J]. Nature, 2002, 417 (6886): 329- 335
doi: 10.1038/417329a
[2]   SHOCHAT T Impact of lifestyle and technology developments on sleep[J]. Nature and Science of Sleep, 2012, 4 (6): 19- 31
[3]   KILLICK R, STRANKS L, HOYOS C M Sleep deficiency and cardiometabolic disease[J]. Clinics in Chest Medicine, 2022, 43 (2): 319- 336
doi: 10.1016/j.ccm.2022.02.011
[4]   BERRY R B, BROOKS R, GAMALDO C, et al AASM scoring manual updates for 2017 (version 2.4)[J]. Journal of Clinical Sleep Medicine, 2017, 13 (5): 665- 666
doi: 10.5664/jcsm.6576
[5]   MADOR M J, KUFEL T J, MAGALANG U J, et al Prevalence of positional sleep apnea in patients undergoing polysomnography[J]. Chest, 2005, 128 (4): 2130- 2137
doi: 10.1378/chest.128.4.2130
[6]   GULLETT N, ZAJKOWSKA Z, WALSH A, et al Heart rate variability (HRV) as a way to understand associations between the autonomic nervous system (ANS) and affective states: a critical review of the literature[J]. International Journal of Psychophysiology, 2023, 192 (5): 35- 42
[7]   GONZALES J U, ELAVSKY S, CIPRYAN L, et al Influence of sleep duration and sex on age-related differences in heart rate variability: findings from program 4 of the HAIE study[J]. Sleep Medicine, 2023, 106 (14): 69- 77
[8]   ERDENEBAYAR U, KIM Y, PARK J U, et al Automatic classification of sleep stage from an ecg signal using a gated-recurrent unit[J]. International Journal of Fuzzy Logic and Intelligent Systems, 2020, 20 (3): 181- 187
doi: 10.5391/IJFIS.2020.20.3.181
[9]   RADHA M, FONSECA P, MOREAU A, et al Sleep stage classification from heart-rate variability using long short-term memory neural networks[J]. Scientific Reports, 2019, 9 (1): 14149
doi: 10.1038/s41598-019-49703-y
[10]   FONSECA P, VAN GILST M M, RADHA M, et al Automatic sleep staging using heart rate variability, body movements, and recurrent neural networks in a sleep disordered population[J]. Sleep, 2020, 43 (9): 48
[11]   GENG D Y, WANG J X, WANG Y, et al Convolutional neural network is a good technique for sleep staging based on HRV: a comparative analysis[J]. Neuroscience Letters, 2022, 779: 136550
doi: 10.1016/j.neulet.2022.136550
[12]   SUN H, GANGLBERGER W, PANNEERSELVAM E, et al Sleep staging from electrocardiography and respiration with deep learning[J]. Sleep, 2020, 43 (7): 306
doi: 10.1093/sleep/zsz306
[13]   WANG W B, QIN D, FANG Y, et al Automatic multi-class sleep staging method based on novel hybrid features[J]. Journal of Electrical Engineering and Technology, 2024, 19 (1): 709- 722
doi: 10.1007/s42835-023-01570-4
[14]   MATHUNJWA B M, LIN Y T, LIN C H, et al Automatic IHR-based sleep stage detection using features of residual neural network[J]. Biomedical Signal Processing and Control, 2023, 85: 105070
doi: 10.1016/j.bspc.2023.105070
[15]   CHAKRABORTY S, GOYAL M, GOYAL P, et al. A machine learning approach for automatic sleep staging using heart rate variability [EB/OL]. (2022-05-13)[2023-08-08]. https://www.biorxiv.org/content/10.1101/2022.05.13.491872v2.full.pdf.
[16]   SURANTHA N, LESMANA T F, ISA S M Sleep stage classification using extreme learning machine and particle swarm optimization for healthcare big data[J]. Journal of Big Data, 2021, 8 (1): 1- 17
doi: 10.1186/s40537-020-00387-6
[17]   彭向东, 潘从成, 柯泽浚, 等 基于并行架构和时空注意力机制的心电分类方法[J]. 浙江大学学报: 工学版, 2022, 56 (10): 1912- 1923
PENG Xiangdong, PAN Congcheng, KE Zejun, et al Classification method for electrocardiograph signals based on parallel architecture model and spatial-temporal attention mechanism[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (10): 1912- 1923
[18]   CHANDRA S, SHARMA A, SINGH G K Feature extraction of ECG signal[J]. Journal of Medical Engineering and Technology, 2018, 42 (4): 306- 316
doi: 10.1080/03091902.2018.1492039
[19]   张敏, 袁辉. 拉依达(PauTa)准则与异常值剔除[EB/OL]. [2023-10-01]. https://www.docin.com/p-773376606.html.
[20]   MENG F, ZHAO D, ZHANG X A fair consensus adjustment mechanism for large-scale group decision making in term of Gini coefficient[J]. Engineering Applications of Artificial Intelligence, 2023, 126 (23): 106962
[21]   ZHANG B, LI Y, CHAI Z A novel random multi-subspace based ReliefF for feature selection[J]. Knowledge-based Systems, 2022, 252 (12): 109400
[22]   LI P. Abc-boost: adaptive base class boost for multi-class classification [C] // Proceedings of the 26th Annual international conference on Machine Learning . New York: Association for Computing Machinery, 2009: 625-632.
[23]   PONOMAREVA N, COLTHURST T, HENDRY G, et al. Compact multi-class boosted trees [C] // 2017 IEEE International Conference on Big Data . Boston: IEEE, 2017: 47-56.
[1] Ping YANG,Dan WANG,Zi-jian KAGN,Tong LI,Li-hua FU,Yue-ren YU. Prediction model of paroxysmal atrial fibrillation based on pattern recognition and ensemble CNN-LSTM[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1039-1048.
[2] SUN Jie, CHEN Ling, RUAN Sheng-sheng , CHEN Gen-cai. Heart rate based physiological states model for
body-controlled games
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(2): 295-300.
[3] DONG Tie-Xun, SUN Shou-Qian, TUN Qun, et al. Study of correlation between heart rate variability and driving fatigue[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(1): 46-50.