Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (11): 2232-2240    DOI: 10.3785/j.issn.1008-973X.2022.11.014
    
Brain functional connections classification method based on significant sparse strong correlation
Ming LI1,2,3(),Li-juan DUAN1,2,3,*(),Wen-jian WANG1,2,3,Qing EN4
1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
2. Beijing Key Laboratory of Trusted Computing, Beijing 100124, China
3. National Engineering Laboratory for Critical Technologies of Information Security Classified Protection, Beijing 100124, China
4. Artificial Intelligence and Machine Learning (AIML) Lab, School of Computer Science, Carlton University, Ottawa K1S 5B6, Canada
Download: HTML     PDF(949KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A brain functional connectivity classification method based on significant sparse strong correlation was proposed to solve problems that data dimension of brain functional connectivity is too high and many redundant features affect the accuracy of neural network classification. In this method, the salient features sparse module was used to filter and enhance the original features. The sparse strong correlation feature context fusion module was used to aggregate the salient feature information in different receptive fields. The fully connected neural network was used for classification prediction. The results on ABIDE and ADHD-200 datasets showed that the accuracy of brain functional connection classification algorithm was improved by 10.41% and 12.5% respectively compared with the existing brain functional connection classification algorithm. The visualization results of the important features show that the proposed method can accurately locate the brain regions related to disease, which has a certain practical value.



Key wordssignificant feature identification      feature screening      feature fusion      feature enhancement      classification of brain functional connections     
Received: 25 March 2022      Published: 02 December 2022
CLC:  TP 391  
Fund:  国家自然科学基金资助项目(62176009, 62106065);北京市教委重点项目(KZ201910005008)
Corresponding Authors: Li-juan DUAN     E-mail: Liming@emails.bjut.edu.cn;ljduan@bjut.edu.cn
Cite this article:

Ming LI,Li-juan DUAN,Wen-jian WANG,Qing EN. Brain functional connections classification method based on significant sparse strong correlation. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2232-2240.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.11.014     OR     https://www.zjujournals.com/eng/Y2022/V56/I11/2232


基于显著稀疏强关联的脑功能连接分类方法

针对脑功能连接数据维度过高、冗余特征过多影响神经网络分类准确率的问题,提出一种基于显著稀疏强关联的脑功能连接分类方法. 该方法利用显著特征稀疏模块对原始特征进行筛选增强;采用稀疏强关联特征上下文融合模块对不同感受野内的显著特征信息进行聚合;使用全连接神经网络进行分类预测. 在ABIDE以及ADHD-200数据集上的实验结果表明,所提方法相较于现有的脑功能连接分类算法在准确率上分别提升了10.41%和12.50%. 重要特征的可视化结果表明所提方法能准确定位与疾病相关的脑区,具有一定实际应用价值.


关键词: 显著特征识别,  特征筛选,  特征增强,  特征融合,  脑功能连接分类 
Fig.1 Overall framework of brain function connection classification method based on significant sparse strong correlation (SSSC)
Fig.2 Saliency region sparse structure
Fig.3 Sparse strong correlation feature context fusion module
数据集 年龄段 患者被试(男/女) 正常被试(男/女) 合计
ASD (6,12] 130/21 114/28 293
(12,17] 156/23 159/43 381
(17,64] 157/18 162/24 361
ADHD200 [7,26] 288/74 306/279 947
Tab.1 Gender and age distribution of different data
数据集 模型 ACC SEN SPE AUC
ABIDE ICA-SVM 63.24 59.51 66.55 63.03
PCA-SVM 58.77 54.34 62.5 58.42
CNN-EW 64.99 62.75 66.76 64.75
Full-BiLSTM 69.29 56.65 79.67 68.16
SCNN 70.94 66.93 73.52 70.23
SSSC(ours) 81.35 78.47 87.88 86.18
ADHD200 ICA-SVM 62.23 36.18 81.7 66.02
PCA-SVM 56.08 42.58 65.84 54.21
CNN-EW 68.71 42.67 84.55 63.61
Full-BiLSTM 69.11 59.36 74.52 66.94
SCNN 69.97 65.28 73.63 69.46
SSSC(ours) 82.47 86.81 75.26 81.43
Tab.2 Comparison of evaluation index results for measuring classification performance %
ASD vs TC
Model ACC/% SEN/% SPE/% AUC/%
SSSC-5% 64.87 13.16 85.22 56.57
SSSC-10% 81.35 78.47 87.88 86.18
SSSC-20% 83.42 76.55 85.69 82.12
SSSC-50% 70.15 19.77 96.15 57.97
SSSC-80% 53.57 0 100 50.00
SSSC-all 53.57 0 100 50.00
ADHD vs TC
Model ACC/% SEN/% SPE/% AUC/%
SSSC-5% 67.76 20.31 93.61 70.16
SSSC-10% 82.47 86.81 75.26 81.43
SSSC-20% 82.55 84.55 73.12 76.12
SSSC-50% 72.11 23.55 89.11 63.22
SSSC-80% 63.15 15.26 92.33 54.22
SSSC-all 61.77 0 100 50.00
Tab.3 Comparison of results of ablation experiments under different number of brain functional connections
Fig.4 Comparison of classification performance by fusing
Fig.5 Primary functional connection strength of important brain functional connections
Fig.6 Important brain functional connections obtained in different datasets
[1]   ITAHASHI T, YAMADA T, WATANABE H, et al Altered network topologies and hub organization in adults with autism: a resting-state fMRI study[J]. PloSone, 2014, 9 (4): e94115
doi: 10.1371/journal.pone.0094115
[2]   LIANG X, WANG J Human connectome: structural and functional brain networks[J]. Chinese Science Bulletin, 2010, 55 (16): 1565- 1583
doi: 10.1360/972009-2150
[3]   SPORNS O Structure and function of complex brain networks[J]. Dialogues in Clinical Neuroscience, 2013, 15 (3): 247- 262
doi: 10.31887/DCNS.2013.15.3/osporns
[4]   STAM C Modern network science of neurological disorders[J]. Nature Reviews Neuroscience, 2014, 15 (10): 683
doi: 10.1038/nrn3801
[5]   WEE C, YAP P, ZHANG D, et al Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification[J]. Brain Structure and Function, 2014, 219 (2): 641- 656
doi: 10.1007/s00429-013-0524-8
[6]   CORTES C, VAPNIK V Support-vector networks[J]. Machine Learning, 1995, 20 (3): 273- 297
[7]   ZHOU J, LU Z, SUN J, et al. Feafiner: biomarker identification from medical data through feature generalization and selection[C]// Acm Sigkdd. Chicago: ACM, 2013: 1034-1042.
[8]   KHAZAEE A, EBRAHIMZADEH A, BABAJANIFEREMI A Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease[J]. Brain Imaging and Behavior, 2016, 10 (3): 799- 817
doi: 10.1007/s11682-015-9448-7
[9]   CRADDOCK R, HOLTZHEIMER P, HU X, et al Disease state prediction from resting state FMRI[J]. Neuro Image, 2009, 47 (6): S80
[10]   MESZLÉNYI R, BUZA K, VIDNYÁNSZKY Z Resting state fMRI functional connectivity-based classification using a convolutional neural network architecture[J]. Frontiers in Neuroinformatics, 2017, 11: 61
doi: 10.3389/fninf.2017.00061
[11]   KAWAHARA J, BROWN C, MILLER S, et al Brainnet CNN: convolutional neural networks for brain networks towards predicting neurodevelopment[J]. NeuroImage, 2017, 146: 1038- 1049
doi: 10.1016/j.neuroimage.2016.09.046
[12]   JIE B, LIU M, LIAN C, et al Designing weighted correlation kernels in convolutional neural networks for functional connectivity based brain disease diagnosis[J]. Medical Image Analysis, 2020, 63
[13]   JEON E, KANG E, LEE J, et al. Enriched representation learning in resting-state fMRI for early MCI diagnosis[C]// MICCAI. Lima: Springer, 2020: 397-406.
[14]   KIM J, CALHOUN V, SHIM E, et al Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia[J]. Neuroimage, 2016, 124: 127- 146
doi: 10.1016/j.neuroimage.2015.05.018
[15]   LI H, PARIKH N, HE L A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes[J]. Frontiers in Neuroscience, 2018, 12: 491
doi: 10.3389/fnins.2018.00491
[16]   HUANG J, ZHOU L, WANG L, et al. Integrating functional and structural connectivities via diffusion-convolution-bilinear neural network[C]// Miccai. Shenzhen: Springer, 2019: 691-699.
[17]   WANG M, HUANG J, LIU M, et al Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI[J]. Medical Image Analysis, 2021, 71: 102063
doi: 10.1016/j.media.2021.102063
[18]   SUBBARAJU V, SURESH M, SUNDARAM S, et al Identifying differences in brain activities and an accurate detection of autism spectrum disorder using resting state functional-magnetic resonance imaging: a spatial filtering approach[J]. Medical Image Analysis, 2017, 35: 375- 389
doi: 10.1016/j.media.2016.08.003
[19]   BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate [C]// Iclr. San Diego, 2015.
[20]   LUONG M, PHAM H, MANNING C. Effective approaches to attention-based neural machine translation [C]// Emnlp. Lisbon: the association for computational Linguistics, 2015: 1412−1421.
[21]   YIN W, SCHÜTZE H, XIANG B, et al Abcnn: Attention-based convolutional neural network for modeling sentence pairs[J]. Transactions of the Association for Computational Linguistics, 2016, 4: 259- 272
doi: 10.1162/tacl_a_00097
[22]   VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems. Long Beach: NIPS Poundation, 2017: 5998-6008.
[23]   CHEN M, RADFORD A, CHILD R, et al. Generative pretraining from pixels[C]// International Conference on Machine Learning. Virtual Event: PNVR, 2020: 1691-1703.
[24]   DOSOVITSKIYET A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [C]// Iclr. Virtual Event: Open Review Net, 2021.
[25]   GAO M, TSAI F, LEE C. Learning a phenotypic-attribute attentional brain connectivity embedding for ADHD classification using rs-fMRI[C]// Embc. Montreal: IEEE, 2020: 5472-5475.
[26]   MA J, ZHU X, YANG D, et al. Attention-guided deep graph neural network for longitudinal alzheimer’s disease analysis[C]// Miccai. Lima: Springer, 2020: 387-396.
[27]   CRADDOCK C, BENHAJALI Y, CHU C, et al The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives[J]. Frontiers in Neuro Informatics, 2013, 7: 27
[28]   BELLEC P, CHU C, CHOUINARDDECORTE F, et al The neuro bureau ADHD-200 preprocessed repository[J]. Neuroimage, 2017, 144: 275- 286
doi: 10.1016/j.neuroimage.2016.06.034
[29]   JI J, CHEN Z, YANG C Convolutional neural network with sparse strategies to classify dynamic functional connectivity[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26 (3): 1219- 1228
[30]   CUI Z, GONG G The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features[J]. Neuroimage, 2018, 178: 622- 637
doi: 10.1016/j.neuroimage.2018.06.001
[31]   XING X, JI J, YAO Y. Convolutional neural network with element-wise filters to extract hierarchical topological features for brain networks[C]// IEEE International Conference on Bioinformatics and Biomedicine. Modrid: IEEE, 2018: 780-783.
[32]   YAN W, ZHANG H, SUI J, et al. Deep chronnectome learning via full bidirectional long short-term memory networks for MCI diagnosis[C]// International Conference on Medical Image Computing and Computer-assisted Intervention. Granada: Springer, Cham, 2018: 249-257.
[33]   HEINSFELD A, FRANCO A, CRADDOCK R, et al Identification of autism spectrum disorder using deep learning and the ABIDE dataset[J]. NeuroImage: Clinical, 2018, 17: 16- 23
doi: 10.1016/j.nicl.2017.08.017
[1] Na ZHANG,Xu-lei QI,Xiao-an BAO,Biao WU,Xiao-mei TU,Yu-ting JIN. Single-stage object detection algorithm based on optimizing position prediction[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 783-794.
[2] Xin-yu HUANG,Fan YOU,Pei ZHANG,Zhao ZHANG,Bai-li ZHANG,Jian-hua LV,Li-zhen XU. Silent liveness detection algorithm based on multi classification and feature fusion network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 263-270.
[3] Yun-zuo ZHANG,Wei GUO,Zhao-quan CAI,Wen-bo LI. Remote sensing image target detection combining multi-scale and attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2215-2223.
[4] Dong-jie YANG,Xian-jun GAO,Shu-hao RAN,Guang-bin ZHANG,Ping WANG,Yuan-wei YANG. Building extraction based on multiple multiscale-feature fusion attention network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1924-1934.
[5] Zhi-chao CHEN,Hai-ning JIAO,Jie YANG,Hua-fu ZENG. Garbage image classification algorithm based on improved MobileNet v2[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1490-1499.
[6] Jia-cheng LIU,Jun-zhong JI. Classification method of fMRI data based on broad learning system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1270-1278.
[7] Yue-lin CHEN,Wen-jing TIAN,Xiao-dong CAI,Shu-ting ZHENG. Text matching model based on dense connection networkand multi-dimensional feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2352-2358.
[8] Xue-yun CHEN,Jin XIA,Ke DU. Overhead transmission line detection based on multiple linear-feature enhanced detector[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2382-2389.
[9] Pu ZHENG,Hong-yang BAI,Wei LI,Hong-wei GUO. Small target detection algorithm in complex background[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1777-1784.
[10] Deng-wen ZHOU,Jin-yue TIAN,Lu-yao MA,Xiu-xiu SUN. Lightweight image semantic segmentation based on multi-level feature cascaded network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1516-1524.
[11] Hong LIN,Yao-yao LU. Scale differentiated text detection method focusing on hard examples[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1506-1516.
[12] Xiang-hao CHENG,Fei-peng DA,Liang WANG. Feature fusion based constrained local model for three-dimensional facial landmark localization[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 770-776.
[13] Wan-liang WANG,Sheng-lan YANG,Yan-wei ZHAO,Zhuo-rong LI. Estimation of river surface flow velocity based on conditional boundary equilibrium generative adversarial network[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2118-2128.
[14] BAO Bi-sai, WU Jian-rong , LOU Xiao-jun, LIU Hai-tao. Feature fusion algorithm based on two-dimensional
feature matrix
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(11): 2081-2088.