Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (7): 1504-1513    DOI: 10.3785/j.issn.1008-973X.2025.07.018
    
Remaining useful life prediction of aircraft engines based on cross-dimensional feature fusion
Dongping ZHANG1(),Dawei WANG1,Shuji HE1,Siliang TANG2,Zhiyong LIU3,4,Zhongqiu LIU5
1. College of Information Engineering, China Jiliang University, Hangzhou 310018, China
2. College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China
3. Polytechnic Institute of Zhejiang University, Hangzhou 310015, China
4. Supcon Technology Limited Company, Hangzhou 310053, China
5. Miaxis Biometrics Limited Company, Hangzhou 310052, China
Download: HTML     PDF(1410KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To address the issues of low prediction accuracy, weak generalization ability, and insufficient feature extraction in remaining useful life (RUL) prediction under varying conditions for aircraft engines with multi-sensor variable data, a method based on cross-dimensional multi-scale convolutional network (CDMSCN) was proposed. The cross-influence of different sensor signals on RUL was modeled using a channel attention mechanism. Multi-scale gated convolutional layers were constructed to capture potential fault evolution patterns at different time granularities during engine operation. Hidden channel feature information was extracted through a channel-dependent module. By mining and integrating multi-dimensional features in the engine sensor data, the dynamic characterization and prediction of engine RUL were effectively achieved. Experiments on a public dataset of turbofan engines were carried out, and results showed that the proposed method significantly improved the prediction accuracy of RUL based on complex datasets.



Key wordsaircraft engine      remaining useful life (RUL)      channel attention      multi-dimensional feature      deep learning     
Received: 17 May 2024      Published: 25 July 2025
CLC:  TH 17  
Fund:  浙江省重点研发计划项目(2024C01028,2024C01108,2022C01144).
Cite this article:

Dongping ZHANG,Dawei WANG,Shuji HE,Siliang TANG,Zhiyong LIU,Zhongqiu LIU. Remaining useful life prediction of aircraft engines based on cross-dimensional feature fusion. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1504-1513.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.07.018     OR     https://www.zjujournals.com/eng/Y2025/V59/I7/1504


基于跨维度特征融合的航空发动机寿命预测

针对多传感器变量数据下变工况航空发动机剩余使用寿命(RUL)预测精度低、泛化能力弱及无法充分挖掘数据特征信息的问题,提出基于跨维度多尺度卷积网络(CDMSCN)的RUL预测方法. 利用通道注意力机制建模不同传感器信号对RUL的交叉影响;构建多尺度门控卷积层,捕捉发动机操作过程中不同时间粒度的潜在故障演变模式;通过通道依赖模块挖掘隐藏的通道特征信息. 通过挖掘并整合发动机传感器数据中的多维特征,有效实现对发动机RUL的动态表征和预测. 在涡扇发动机的公开数据集上开展实验,结果表明,所提方法能够有效提高基于复杂数据集的RUL预测精度.


关键词: 航空发动机,  剩余使用寿命(RUL),  通道注意力,  多维特征,  深度学习 
Fig.1 Framework of remaining useful life prediction
Fig.2 Time series embedding module
Fig.3 Channel attention module
Fig.4 Multi-scale temporal dependency module
Fig.5 Gating unit
Fig.6 Schematic diagram of aircraft engine
子数据集FD001FD002FD003FD004
运行工况1616
故障模式1122
训练引擎数100260100249
测试引擎数100259100248
Tab.1 Main parameters of commercial modular aero-propulsion system simulation dataset
编号物理描述编号物理描述
1风扇进口温度12燃流量于静压比
2低压压气机出口温度13风扇修正转速
3高压压气机出口温度14修正转速
4低压涡轮出口温度15涵道比
5风扇进口压强16燃烧室油气比
6外涵道压强17抽气焓
7高压压气机出口压强18风扇转速
8实际风扇转速19风扇修正转速
9实际核心机转速20高压涡轮冷气流量
10发动机压强比21低压涡轮冷气流量
11高压压气机出口静压
Tab.2 Sensor information in commercial modular aero-propulsion system simulation dataset
Fig.7 Piecewise linear degradation function of remaining useful life
网络模块网络层超参数设置
模块一卷积层1(8,4,1,1,64)
模块二卷积层2(2,1,14,14,14)
模块三深度卷积1(1,1,14×64,14×64,14×64)
模块三深度卷积2(5,1,14×64,14×64,14×64)
模块三深度卷积3(7,1,14×64,14×64,14×64)
模块四逐点组卷积1(1,1,14,14×64,14×64)
模块四逐点组卷积2(1,1,14,14×64,14×64)
回归器隐藏层1(14×64×16,14×64)
回归器隐藏层2(14×64,64)
回归器输出层(64,1)
Tab.3 Hyperparameters of cross-dimensional multi-scale convolutional network
Fig.8 Impact of time window sizes on prediction method performance
Fig.9 Impact of channel dimension sizes on prediction method performance
Fig.10 Remaining useful life prediction results of proposed method in four sub-datasets
网络RMSEθ
FD001FD002FD003FD004FD001FD002FD003FD004
Double-Attn[17]12.2517.0813.3919.86198.001575.00290.001741.00
CATA-TCN[21]12.8017.6113.1621.04234.311361.23290.632303.42
MSDCNN-LSTM[28]12.9618.7011.7821.57256.591873.86211.992699.34
MHT[29]11.9213.7010.6317.73215.20746.70150.501572.00
ATCN[15]11.4815.8211.3417.80194.251210.57249.191934.86
TATFA-Transformer[19]12.2115.0711.2318.81261.501359.70210.212506.35
本研究11.3812.7611.8114.58192.40629.61218.85908.58
Tab.4 Comparison of evaluation indicators of different prediction methods in four sub-datasets
名称通道注意力模块多尺度时间依赖模块通道依赖模块
CDMSCN
变体1
变体2挤压-激励机制[15]
变体3
变体4
Tab.5 Cross-dimensional multi-scale convolutional network and its variants
名称RMSEθ
FD001FD002FD003FD004FD001FD002FD003FD004
CDMSCN11.3812.7611.8114.58192.40629.61218.85908.58
变体112.5313.1113.3316.42212.11646.06287.311520.43
变体211.6012.9712.1215.83195.55574.42239.391167.74
变体313.4013.6413.4217.00361.93846.05352.501874.28
变体412.6213.4213.3415.31307.37730.52352.501232.79
Tab.6 Performance comparison of cross-dimensional multi-scale convolutional network and its variants
Fig.11 Remaining useful life prediction results of cross-dimensional multi-scale convolutional network and its variants
Fig.12 Visualization of attention scores at different stages of degeneration
[1]   DE PATER I, REIJNS A, MITICI M Alarm-based predictive maintenance scheduling for aircraft engines with imperfect remaining useful life prognostics[J]. Reliability Engineering and System Safety, 2022, 221: 108341
doi: 10.1016/j.ress.2022.108341
[2]   郭俊锋, 刘国华, 刘国伟 基于长序列的航空发动机剩余使用寿命预测方法[J]. 北京航空航天大学学报, 2024, 50 (3): 774- 784
GUO Junfeng, LIU Guohua, LIU Guowei Prediction method of remaining useful life of aero-engine based on long sequence[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (3): 774- 784
[3]   PRAKASH O, SAMANTARAY A K Prognosis of dynamical system components with varying degradation patterns using model–data–fusion[J]. Reliability Engineering and System Safety, 2021, 213: 107683
doi: 10.1016/j.ress.2021.107683
[4]   XIANG S, QIN Y, LUO J, et al Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction[J]. Reliability Engineering and System Safety, 2021, 216: 107927
doi: 10.1016/j.ress.2021.107927
[5]   GE R, ZHAI Q, WANG H, et al Wiener degradation models with scale-mixture normal distributed measurement errors for RUL prediction[J]. Mechanical Systems and Signal Processing, 2022, 173: 109029
doi: 10.1016/j.ymssp.2022.109029
[6]   LIU K, ZOU T J, XIN M C, et al RUL prediction based on two-phase Wiener process[J]. Quality and Reliability Engineering International, 2022, 38 (7): 3829- 3843
doi: 10.1002/qre.3177
[7]   WANG H, NI G, CHEN J, et al Research on rolling bearing state health monitoring and life prediction based on PCA and Internet of Things with multi-sensor[J]. Measurement, 2020, 157: 107657
doi: 10.1016/j.measurement.2020.107657
[8]   NGUYEN K T P, MEDJAHER K, GOGU C Probabilistic deep learning methodology for uncertainty quantification of remaining useful lifetime of multi-component systems[J]. Reliability Engineering and System Safety, 2022, 222: 108383
doi: 10.1016/j.ress.2022.108383
[9]   HUANG C G, YIN X, HUANG H Z, et al An enhanced deep learning-based fusion prognostic method for RUL prediction[J]. IEEE Transactions on Reliability, 2020, 69 (3): 1097- 1109
doi: 10.1109/TR.2019.2948705
[10]   LIU X, LEI Y, LI N, et al RUL prediction of machinery using convolutional-vector fusion network through multi-feature dynamic weighting[J]. Mechanical Systems and Signal Processing, 2023, 185: 109788
doi: 10.1016/j.ymssp.2022.109788
[11]   HONG S, QIN C, LAI X, et al State-of-health estimation and remaining useful life prediction for lithium-ion batteries based on an improved particle filter algorithm[J]. Journal of Energy Storage, 2023, 64: 107179
doi: 10.1016/j.est.2023.107179
[12]   XU X, TANG S, YU C, et al Remaining useful life prediction of lithium-ion batteries based on Wiener process under time-varying temperature condition[J]. Reliability Engineering and System Safety, 2021, 214: 107675
doi: 10.1016/j.ress.2021.107675
[13]   CHEN Y, LIU D, DING X, et al Variational encoding based on factorized temporal-channel fusion and feature fusion for interpretable remaining useful life prediction[J]. Advanced Engineering Informatics, 2024, 59: 102316
doi: 10.1016/j.aei.2023.102316
[14]   莫仁鹏, 司小胜, 李天梅, 等 基于多尺度特征与注意力机制的轴承寿命预测[J]. 浙江大学学报: 工学版, 2022, 56 (7): 1447- 1456
MO Renpeng, SI Xiaosheng, LI Tianmei, et al Bearing life prediction based on multi-scale features and attention mechanism[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (7): 1447- 1456
[15]   ZHANG Q, LIU Q, YE Q An attention-based temporal convolutional network method for predicting remaining useful life of aero-engine[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107241
doi: 10.1016/j.engappai.2023.107241
[16]   JIN R, ZHOU D, WU M, et al An adaptive and dynamical neural network for machine remaining useful life prediction[J]. IEEE Transactions on Industrial Informatics, 2024, 20 (2): 1093- 1102
doi: 10.1109/TII.2023.3254656
[17]   LIU L, SONG X, ZHOU Z Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture[J]. Reliability Engineering and System Safety, 2022, 221: 108330
doi: 10.1016/j.ress.2022.108330
[18]   LI H, ZHAO W, ZHANG Y, et al Remaining useful life prediction using multi-scale deep convolutional neural network[J]. Applied Soft Computing, 2020, 89: 106113
doi: 10.1016/j.asoc.2020.106113
[19]   ZHU J, MA J, WU J A regularized constrained two-stream convolution augmented Transformer for aircraft engine remaining useful life prediction[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108161
doi: 10.1016/j.engappai.2024.108161
[20]   ZHANG Y, SU C, WU J, et al Trend-augmented and temporal-featured Transformer network with multi-sensor signals for remaining useful life prediction[J]. Reliability Engineering and System Safety, 2024, 241: 109662
doi: 10.1016/j.ress.2023.109662
[21]   LIN L, WU J, FU S, et al Channel attention & temporal attention based temporal convolutional network: a dual attention framework for remaining useful life prediction of the aircraft engines[J]. Advanced Engineering Informatics, 2024, 60: 102372
doi: 10.1016/j.aei.2024.102372
[22]   袁烨, 黄虹, 程骋, 等 基于特征注意力机制的GRU-GAN航空发动机剩余寿命预测[J]. 中国科学: 技术科学, 2022, 52 (1): 198- 212
YUAN Ye, HUANG Hong, CHENG Cheng, et al Remaining useful life prediction of the aircraft engine based on the GRU-GAN network with a feature attention mechanism[J]. Scientia Sinica: Technologica, 2022, 52 (1): 198- 212
doi: 10.1360/SST-2021-0434
[23]   SONG Y, GAO S, LI Y, et al Distributed attention-based temporal convolutional network for remaining useful life prediction[J]. IEEE Internet of Things Journal, 2021, 8 (12): 9594- 9602
doi: 10.1109/JIOT.2020.3004452
[24]   CHOLLET F. Xception: deep learning with depthwise separable convolutions [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1800–1807.
[25]   MO Y, WU Q, LI X, et al Remaining useful life estimation via transformer encoder enhanced by a gated convolutional unit[J]. Journal of Intelligent Manufacturing, 2021, 32 (7): 1997- 2006
doi: 10.1007/s10845-021-01750-x
[26]   XU Q, CHEN Z, WU K, et al KDnet-RUL: a knowledge distillation framework to compress deep neural networks for machine remaining useful life prediction[J]. IEEE Transactions on Industrial Electronics, 2022, 69 (2): 2022- 2032
doi: 10.1109/TIE.2021.3057030
[27]   HUANG C G, HUANG H Z, LI Y F A bidirectional LSTM prognostics method under multiple operational conditions[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (11): 8792- 8802
doi: 10.1109/TIE.2019.2891463
[28]   CHEN W, LIU C, CHEN Q, et al Multi-scale memory-enhanced method for predicting the remaining useful life of aircraft engines[J]. Neural Computing and Applications, 2023, 35 (3): 2225- 2241
doi: 10.1007/s00521-022-07378-z
[1] Shengju WANG,Zan ZHANG. Missing value imputation algorithm based on accelerated diffusion model[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1471-1480.
[2] Yongqing CAI,Cheng HAN,Wei QUAN,Wudi CHEN. Visual induced motion sickness estimation model based on attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1110-1118.
[3] Lihong WANG,Xinqian LIU,Jing LI,Zhiquan FENG. Network intrusion detection method based on federated learning and spatiotemporal feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1201-1210.
[4] Huizhi XU,Xiuqing WANG. Perception of distance and speed of front vehicle based on vehicle image features[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1219-1232.
[5] Zan CHEN,Ran LI,Yuanjing FENG,Yongqiang LI. Video snapshot compressive imaging reconstruction based on temporal super-resolution[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 956-963.
[6] Li MA,Yongshun WANG,Yao HU,Lei FAN. Pre-trained long-short spatiotemporal interleaved Transformer for traffic flow prediction applications[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 669-678.
[7] Qiaohong CHEN,Menghao GUO,Xian FANG,Qi SUN. Image captioning based on cross-modal cascaded diffusion model[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 787-794.
[8] Zhengyu GU,Feifei LAI,Chen GENG,Ximing WANG,Yakang DAI. Knowledge-guided infarct segmentation of ischemic stroke[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 814-820.
[9] Minghui YAO,Yueyan WANG,Qiliang WU,Yan NIU,Cong WANG. Siamese networks algorithm based on small human motion behavior recognition[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 504-511.
[10] Liming LIANG,Pengwei LONG,Jiaxin JIN,Renjie LI,Lu ZENG. Steel surface defect detection algorithm based on improved YOLOv8s[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 512-522.
[11] Kaibo YANG,Mingen ZHONG,Jiawei TAN,Zhiying DENG,Mengli ZHOU,Ziji XIAO. Small-scale sparse smoke detection in multiple fire scenarios based on semi-supervised learning[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 546-556.
[12] Zhichao CHEN,Jie YANG,Fan LI,Zhicheng FENG. Review on deep learning-based key algorithm for train running environment perception[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 1-17.
[13] Dengfeng LIU,Shihai CHEN,Wenjing GUO,Zhilei CHAI. Efficient halftone algorithm based on lightweight residual networks[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 62-69.
[14] Yi ZHAO,Chun AN,Minghao LI,Jianxiao MA,Shuo HUAI. Selection of lane-changing distance for vehicles in urban expressway interchange weaving section[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 205-212.
[15] Fan LI,Jie YANG,Zhicheng FENG,Zhichao CHEN,Yunxiao FU. Pantograph-catenary contact point detection method based on image recognition[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1801-1810.