|
|
Segmentation and localization method of coal and gangue identification based on visual information |
Yuhao YANG1,2( ),Yongcun GUO1,2,3,*( ),Deyong LI1,2,3,Shuang WANG1,2,3 |
1. State Key Laboratory of Digital Intelligent Technology for Unmanned Coal Mining, Anhui University of Science and Technology, Huainan 232001, China 2. School of Mechatronics Engineering, Anhui University of Science and Technology, Huainan 232001, China 3. Collaborative Innovation Center for Mining Intelligent Technology and Equipment, Anhui University of Science and Technology, Huainan 232001, China |
|
|
Abstract A new segmentation and localization method of coal and gangue identification was proposed, aiming at the problems of low detection accuracy of coal and gangue visual perception model and low accuracy of centroid localization in the complex similar background. The YOLOv5s model was optimized by the efficient multi-scale and squeeze-and-excitation attention module (ESAM), the content-aware reassembly of features module (CARAFE) and the co-designing and scaling ConvNets with masked autoencoders network (ConvNeXtV2) to construct a coal and gangue target detection model (ECC-YOLO), and to improve the comprehensive detection performance of coal and gangue. A coal and gangue edge detection algorithm integrating adaptive median filtering and gradient enhancement was established to achieve accurate segmentation and centroid localization of gangue images. Based on the coal and gangue homemade dataset to carry out experiments, the experimental results show that: the combined detection performance of ECC-YOLO was optimal when compared to YOLOv5s, YOLOv7-tiny, YOLOv8s, SSD, and DETR, with a mean average precision of 89.0% and an average detection speed of 89.29 FPS. Comparing Canny, Prewitt, KSW and OTSU algorithms, the proposed algorithm has the best degree of completeness for edge extraction, and its pixel area and centroid coordinates have a maximum error rate of 1.491% and 1.796%, which has high positioning accuracy for gangue.
|
Received: 04 June 2024
Published: 25 July 2025
|
|
Fund: 国家自然科学基金资助项目(52404160,52274152);深部煤矿采动响应与灾害防控国家重点实验室开放基金资助项目(SKLMRDPC23KF21);安徽理工大学高层次引进人才科研启动基金资助项目(2023yjrc56);矿山液压技术与装备国家地方联合工程研究中心开放基金资助项目(MHTE23-R07). |
Corresponding Authors:
Yongcun GUO
E-mail: yang658520@163.com;guoyc1965@126.com
|
基于视觉信息的煤矸识别分割定位方法
在复杂相似背景下煤矸视觉感知模型存在检测精度低与形心定位精度低的问题,为此提出新的煤矸识别分割定位方法. 采用高效多尺度挤压激励注意力机制(ESAM)、内容感知特征重组模块(CARAFE)与全卷积掩码自编码器网络(ConvNeXtV2)优化YOLOv5s模型,构建煤矸目标检测模型(ECC-YOLO),提升煤矸的综合检测性能. 建立融合自适应中值滤波与梯度增强的煤矸边缘检测算法,实现对矸石图像的精准分割与形心定位. 基于煤矸自制数据集的实验结果表明:相比YOLOv5s、YOLOv7-tiny、YOLOv8s、SSD和DETR,ECC-YOLO的综合检测性能最优,平均精度均值为89.0%,平均检测速度为89.29帧/s;对比Canny、Prewitt、KSW和OTSU算法,所建算法对于边缘提取的完整程度最佳,像素面积与形心坐标的最大误差率分别为1.491%和1.796%,该算法具有较高的矸石定位精度.
关键词:
煤矸识别,
YOLO,
注意力机制,
边缘检测,
形心定位
|
|
[1] |
王国法, 庞义辉, 任怀伟, 等 智慧矿山系统工程及关键技术研究与实践[J]. 煤炭学报, 2024, 49 (1): 181- 202 WANG Guofa, PANG Yihui, REN Huaiwei, et al System engineering and key technologies research and practice of smart mine[J]. Journal of China Coal Society, 2024, 49 (1): 181- 202
|
|
|
[2] |
葛世荣, 张晞, 薛光辉, 等 我国煤矿煤机智能技术与装备发展研究[J]. 中国工程科学, 2023, 25 (5): 146- 156 GE Shirong, ZHANG Xi, XUE Guanghui, et al Development of intelligent technologies and machinery for coal mining in China’s underground coal mines[J]. Strategic Study of CAE, 2023, 25 (5): 146- 156
doi: 10.15302/J-SSCAE-2023.05.013
|
|
|
[3] |
朱冉, 赵跃民, 赵鹏飞, 等 空气重介质流化床中细粒煤的流化与分选特性[J]. 煤炭学报, 2016, 41 (3): 727- 734 ZHU Ran, ZHAO Yuemin, ZHAO Pengfei, et al Bed fluidization characteristics and separating effect of fine coal in an air dense medium fluidized bed[J]. Journal of China Coal Society, 2016, 41 (3): 727- 734
|
|
|
[4] |
曹伟. 煤矿井下原煤初选动筛跳汰机结构优化和控制方法研究[D]. 北京: 中国矿业大学(北京), 2019: 1–96. CAO Wei. Mechanism optimization and control method research of moving sieve jig for underground coal mine raw coal preparation system [D]. Beijing: China University of Mining and Technology-Beijing, 2019: 1–96.
|
|
|
[5] |
桂夏辉, 邢耀文, 曹亦俊, 等 低品质煤泥浮选过程强化研究进展及其思考[J]. 煤炭学报, 2021, 46 (9): 2715- 2732 GUI Xiahui, XING Yaowen, CAO Yijun, et al Recent advances and thinking in process intensification of low quality coal slime flotation[J]. Journal of China Coal Society, 2021, 46 (9): 2715- 2732
|
|
|
[6] |
刘涛, 李博, 夏蕊, 等 不同工况下可见-近红外光谱的煤矸识别研究[J]. 光谱学与光谱分析, 2024, 44 (3): 821- 828 LIU Tao, LI Bo, XIA Rui, et al Study on coal and gangue recognition by vis-NIR spectroscopy under different working conditions[J]. Spectroscopy and Spectral Analysis, 2024, 44 (3): 821- 828
|
|
|
[7] |
何磊, 郭永存, 支亚, 等 基于几何特征约束的煤矸DE-XRT精准识别方法[J]. 煤炭科学技术, 2024, 52 (5): 262- 275 HE Lei, GUO Yongcun, ZHI Ya, et al Accurate identification method of coal and gangue based on geometric feature constraints by DE-XRT[J]. Coal Science and Technology, 2024, 52 (5): 262- 275
|
|
|
[8] |
LAI W, HU F, KONG X, et al The study of coal gangue segmentation for location and shape predicts based on multispectral and improved Mask R-CNN[J]. Powder Technology, 2022, 407: 117655
doi: 10.1016/j.powtec.2022.117655
|
|
|
[9] |
曹现刚, 刘思颖, 王鹏, 等 面向煤矸分拣机器人的煤矸识别定位系统研究[J]. 煤炭科学技术, 2022, 50 (1): 237- 246 CAO Xiangang, LIU Siying, WANG Peng, et al Research on coal gangue identification and positioning system based on coal-gangue sorting robot[J]. Coal Science and Technology, 2022, 50 (1): 237- 246
|
|
|
[10] |
单鹏飞, 李晨炜, 来兴平, 等 模拟暗湿工况下煤矸混合体态势热敏图像精准辨识试验[J]. 煤炭学报, 2023, 48 (Suppl.2): 802- 812 SHAN Pengfei, LI Chenwei, LAI Xingping, et al Experiment on accurate identification of thermal image of coal-gangue mixture under a simulated dusky and wet condition[J]. Journal of China Coal Society, 2023, 48 (Suppl.2): 802- 812
|
|
|
[11] |
司垒, 谭超, 朱嘉皓, 等 基于X射线图像和激光点云的煤矸识别方法[J]. 仪器仪表学报, 2022, 43 (9): 193- 205 SI Lei, TAN Chao, ZHU Jiahao, et al A coal-gangue recognition method based on X-ray image and laser point cloud[J]. Chinese Journal of Scientific Instrument, 2022, 43 (9): 193- 205
|
|
|
[12] |
YAN P, SUN Q, YIN N, et al Detection of coal and gangue based on improved YOLOv5.1 which embedded scSE module[J]. Measurement, 2022, 188: 110530
doi: 10.1016/j.measurement.2021.110530
|
|
|
[13] |
李德永, 王国法, 郭永存, 等 基于CFS-YOLO算法的复杂工况环境下煤矸图像识别方法[J]. 煤炭科学技术, 2024, 52 (6): 226- 237 LI Deyong, WANG Guofa, GUO Yongcun, et al Image recognition method of coal gangue in complex working conditions based on CES-YOLO algorithm[J]. Coal Science and Technology, 2024, 52 (6): 226- 237
|
|
|
[14] |
李娟莉, 魏代良, 李博, 等 基于深度学习轻量化的改进SSD煤矸快速分选模型[J]. 东北大学学报: 自然科学版, 2023, 44 (10): 1474- 1480 LI Juanli, WEI Dailiang, LI Bo, et al Improved SSD rapid separation model of coal gangue based on deep learning and light-weighting[J]. Journal of Northeastern University: Natural Science, 2023, 44 (10): 1474- 1480
|
|
|
[15] |
LV Z, WANG W, XU Z, et al Cascade network for detection of coal and gangue in the production context[J]. Powder Technology, 2021, 377: 361- 371
doi: 10.1016/j.powtec.2020.08.088
|
|
|
[16] |
韦小龙, 王方田, 何东升, 等 基于CSPNet-YOLOv7目标检测算法的煤矸图像识别模型[J]. 煤炭科学技术, 2024, 52 (Suppl.1): 238- 248 WEI Xiaolong, WANG Fangtian, HE Dongsheng, et al Coal gangue image recognition model based on CSPNet-YOLOv7 target detection algorithm[J]. Coal Science and Technology, 2024, 52 (Suppl.1): 238- 248
doi: 10.12438/cst.2023-0546
|
|
|
[17] |
XUE G, LI S, HOU P, et al Research on lightweight YOLO coal gangue detection algorithm based on ResNet18 backbone feature network[J]. Internet of Things, 2023, 22: 100762
doi: 10.1016/j.iot.2023.100762
|
|
|
[18] |
郜亚松, 张步勤, 郎利影 基于深度学习的煤矸石识别技术与实现[J]. 煤炭科学技术, 2021, 49 (12): 202- 208 GAO Yasong, ZHANG Buqin, LANG Liying Coal and gangue recognition technology and implementation based on deep learning[J]. Coal Science and Technology, 2021, 49 (12): 202- 208
doi: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112025
|
|
|
[19] |
徐志强, 吕子奇, 王卫东, 等 煤矸智能分选的机器视觉识别方法与优化[J]. 煤炭学报, 2020, 45 (6): 2207- 2216 XU Zhiqiang, LÜ Ziqi, WANG Weidong, et al Machine vision recognition method and optimization for intelligent separation of coal and gangue[J]. Journal of China Coal Society, 2020, 45 (6): 2207- 2216
|
|
|
[20] |
XIN F, JIA Q, YANG Y, et al A high accuracy detection method for coal and gangue with S3DD-YOLOv8[J]. International Journal of Coal Preparation and Utilization, 2025, 45 (3): 637- 655
doi: 10.1080/19392699.2024.2346173
|
|
|
[21] |
WANG X, GUO Y, HU K, et al A detection method for densely distributed coal and gangue with uneven particle based on DeepLabV3+[J]. Measurement, 2024, 235: 114756
doi: 10.1016/j.measurement.2024.114756
|
|
|
[22] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132–7141.
|
|
|
[23] |
CAO Z, LI J, FANG L, et al Research on efficient classification algorithm for coal and gangue based on improved MobileNetV3-small[J]. International Journal of Coal Preparation and Utilization, 2025, 45 (2): 437- 462
doi: 10.1080/19392699.2024.2353128
|
|
|
[24] |
ZHANG J, LI X, LI J, et al. Rethinking mobile block for efficient attention-based models [C]// 2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 1389–1400.
|
|
|
[25] |
SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510–4520.
|
|
|
[26] |
OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning [C]// 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Rhodes Island: IEEE, 2023: 1–5.
|
|
|
[27] |
WANG J, CHEN K, XU R, et al. CARAFE: content-aware reassembly of features [C]// 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 3007–3016.
|
|
|
[28] |
WOO S, DEBNATH S, HU R, et al. ConvNeXt V2: co-designing and scaling ConvNets with masked autoencoders [C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 16133–16142.
|
|
|
[29] |
卞艳, 宫雨生, 马国鹏, 等 基于无人机遥感影像的水体提取方法[J]. 浙江大学学报: 工学版, 2022, 56 (4): 764- 774 BIAN Yan, GONG Yusheng, MA Guopeng, et al Water extraction from unmanned aerial vehicle remote sensing images[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (4): 764- 774
|
|
|
[30] |
程训, 余建波 基于机器视觉的加工刀具磨损监测方法[J]. 浙江大学学报: 工学版, 2021, 55 (5): 896- 904 CHENG Xun, YU Jianbo Monitoring method for machining tool wear based on machine vision[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (5): 896- 904
|
|
|
[31] |
张云洲, 吴峻 Prewitt霍尔磁梯度张量系统结构设计[J]. 仪器仪表学报, 2021, 42 (9): 115- 123 ZHANG Yunzhou, WU Jun Structure design of Prewitt hall magnetic gradient tensor system[J]. Chinese Journal of Scientific Instrument, 2021, 42 (9): 115- 123
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|