Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (6): 1277-1283    DOI: 10.3785/j.issn.1008-973X.2025.06.018
    
Uniformity evaluation of bio-printer based on improved YOLOv8-Seg model
Ming CAO(),Wufeng DUAN,Mengxiao MA,Fanrong AI,Kui ZHOU*()
School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
Download: HTML     PDF(2227KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The current biological 3D printer relies on electron microscopes to observe printed results and uses the three-point circle method to calculate the area for evaluating the product uniformity. However, this approach has notable issues, including time consumption, subjectivity, and large discrepancies with the real situation. Thus, an improved YOLOv8-Seg model was proposed for contour recognition of the printed products. The Adam optimizer was employed, and the training parameters of the original YOLOv8-Seg model were adjusted to ensure that the model’s confidence level for product recognition was mostly above 0.94. The trained model achieved an mAP50 of 99.5% and an mAP50?90 of 98.4%. Subsequently, data images in which a 500 μm scale bar was pre-placed were used to directly calculate the recognized contour area. Additionally, an algorithm for evaluating the similarity of the recognized contour to a circle was incorporated to optimize the metric for assessing product uniformity. The optimized algorithm showed that the difference between the recognized contour and the real contour was less than 0.25%. Finally, variance coefficient (CV) and circularity analyses were performed on the contour areas obtained by different methods. Results indicated that when the CV was less than 20% and the circularity was greater than 0.65, the printed product could be considered uniform.



Key wordsbio-printer      three-point circle method      uniformity      YOLOv8-Seg model      mAP50      mAP50?90      coefficient of variation      circularity     
Received: 16 November 2024      Published: 30 May 2025
CLC:  TP 391.4  
Fund:  江西省重点研发计划资助项目(20232BBE50017);江西省自然科技基金资助项目(20232BAB215016).
Corresponding Authors: Kui ZHOU     E-mail: caoming@ncu.edu.cn;zhoukui@ncu.edu.cn
Cite this article:

Ming CAO,Wufeng DUAN,Mengxiao MA,Fanrong AI,Kui ZHOU. Uniformity evaluation of bio-printer based on improved YOLOv8-Seg model. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1277-1283.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.06.018     OR     https://www.zjujournals.com/eng/Y2025/V59/I6/1277


基于改进YOLOv8-Seg模型的生物打印机产物均一性评估

目前生物打印机依赖电子显微镜观测打印结果,并通过三点画圆法计算面积评价产物均一性,耗时久、主观性强、与真实情况差异大. 为此,提出基于改进YOLOv8-Seg模型的打印产物轮廓识别. 使用Adam作为优化器并调节原YOLOv8-Seg模型的训练参数,确保模型对打印产物识别的置信度水平大多高于0.94. 训练得到的mAP50达到99.5%,mAP50?90达到98.4%. 采集数据图片中事先放置的500 μm的标度尺,实现对所识别轮廓面积的直接计算,同时结合识别轮廓与圆形相似度的算法,优化打印产物均一性的评估指标. 优化后的算法所识别的轮廓与真实轮廓的差异性小于0.25%. 对不同方法所获得的打印结果的轮廓面积进行变异系数CV处理与圆度分析,结果表明,当CV小于20%,圆度大于0.65时,可认为打印产物均一性良好.


关键词: 生物打印机,  三点画圆法,  均一性,  YOLOv8-Seg模型,  mAP50,  mAP50?90,  变异系数,  圆度 
Fig.1 Printing results under unidirectional compensation mode and bidirectional compensation mode
Fig.2 Schematic of minimum fitting circle obtained by three-point circle method
Fig.3 YOLOv8-Seg model architecture
Fig.4 Implemention process diagram of 2D CNN
Fig.5 Training results of improved YOLOv8-Seg model
Fig.6 Printed result recognition and average confidence map
Fig.7 Comparative contour deviation visualization of undirectional compensation printing mode
Fig.8 Comparative contour deviation visualization of bidirectional compensation printing mode
Fig.9 Contour area, circularity, and coefficient of variation chart
[1]   FANG Y C, GUO Y Z, LIU T K, et al Advances in 3D Bioprinting[J]. Chinese Journal of Mechanical Engineering, 2022, 1 (1): 100011
[2]   鞠尔男, 武力, 李欣芯, 等 生物医疗领域三维打印的研究与应用[J]. 中国组织工程研究, 2018, 22 (30): 4906- 4912
JU Ernan, WU Li, LI Xinxin, et al Review on three-dimensional printing in the biomedical field[J]. Chinese Journal of Tissue Engineering Research, 2018, 22 (30): 4906- 4912
doi: 10.3969/j.issn.2095-4344.0992
[3]   DEY M, OZBOLAT I T 3D bioprinting of cells, tissues and organs[J]. Scientific Reports, 2020, 10 (1): 14023
doi: 10.1038/s41598-020-70086-y
[4]   MATAI I, KAUR G, SEYEDSALEHI A, et al Progress in 3D bioprinting technology for tissue/organ regenerative engineering[J]. Biomaterials, 2020, 226: 119536
doi: 10.1016/j.biomaterials.2019.119536
[5]   NG W L, CHAN A, ONG Y S, et al Deep learning for fabrication and maturation of 3D bioprinted tissues and organs[J]. Virtual and Physical Prototyping, 2020, 15 (3): 340- 358
[6]   MALEKPOUR A, CHEN X Printability and cell viability in extrusion-based bioprinting from experimental, computational, and machine learning views[J]. Journal of Functional Biomaterials, 2022, 13 (2): 40
[7]   SALEHI A W, KHAN S, GUPTA G, et al A study of CNN and transfer learning in medical imaging: advantages, challenges, future scope[J]. Sustainability, 2023, 15 (7): 5930
doi: 10.3390/su15075930
[8]   JIANG P, ERGU D, LIU F, et al A review of yolo algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066- 1073
doi: 10.1016/j.procs.2022.01.135
[9]   DIWAN T, ANIRUDH G, TEMBHURNE J V Object detection using YOLO: challenges, architectural successors, datasets and applications[J]. Multimedia Tools and Applications, 2023, 82 (6): 9243- 9275
doi: 10.1007/s11042-022-13644-y
[10]   HUSSAIN M YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11 (7): 677
doi: 10.3390/machines11070677
[11]   HAO S, ZHOU Y, GUO Y A brief survey on semantic segmentation with deep learning[J]. Neurocomputing, 2020, 406: 302- 321
doi: 10.1016/j.neucom.2019.11.118
[12]   MO Y, WU Y, YANG X, et al Review the state-of-the-art technologies of semantic segmentation based on deep learning[J]. Neurocomputing, 2022, 493: 626- 646
[13]   LI X, JIAO H, WANG Y Edge detection algorithm of cancer image based on deep learning[J]. Bioengineered, 2020, 11 (1): 693- 707
[14]   PARAK A, PRADEEP P, DU TOIT L C, et al Functionalizing bioinks for 3D bioprinting applications[J]. Drug Discovery Today, 2019, 24 (1): 198- 205
[15]   许杰, 关一民 基于热泡喷墨技术制备均匀细胞球的创新方法[J]. 科技通报, 2024, 40 (4): 33- 38
XU Jie, GUAN Yimin Innovative method of manufacturing uniform cell spheroids based on thermal inkjet technology[J]. Bulletin of Science and Technology, 2024, 40 (4): 33- 38
[16]   ZHENG L, YI J, HE P, et al Improvement of the YOLOv8 model in the optimization of the weed recognition algorithm in cotton field[J]. Plants, 2024, 13 (13): 1843
doi: 10.3390/plants13131843
[17]   JING J, LIU S, WANG G, et al Recent advances on image edge detection: a comprehensive review[J]. Neurocomputing, 2022, 503: 259- 271
[18]   SUN R, LEI T, CHEN Q, et al Survey of image edge detection[J]. Frontiers in Signal Processing, 2022, 2: 826967
[19]   STRUDEL R, GARCIA R, LAPTEV I, et al. Segmenter: transformer for semantic segmentation [C]// IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 7242–7252.
[20]   GUO Y, LIU Y, GEORGIOU T, et al A review of semantic segmentation using deep neural networks[J]. International Journal of Multimedia Information Retrieval, 2018, 7 (2): 87- 93
[21]   ZHANG M, LI X, XU M, et al Automated semantic segmentation of red blood cells for sickle cell disease[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24 (11): 3095- 3102
[22]   BAI R, WANG M, ZHANG Z, et al Automated construction site monitoring based on improved YOLOv8-seg instance segmentation algorithm[J]. IEEE Access, 2023, 11: 139082- 139096
[23]   YUE X, QI K, NA X, et al Improved YOLOv8-seg network for instance segmentation of healthy and diseased tomato plants in the growth stage[J]. Agriculture, 2023, 13 (8): 1643
[24]   ZHANG H, MENG C, BAI X, et al Rock-ring detection accuracy improvement in infrared satellite image with sub-pixel edge detection[J]. IET Image Processing, 2019, 13 (5): 729- 735
[25]   WU Y, HAN Q, JIN Q, et al LCA-YOLOv8-seg: an improved lightweight YOLOv8-seg for real-time pixel-level crack detection of dams and bridges[J]. Applied Sciences, 2023, 13 (19): 10583
[26]   BAYRAMOĞLU Z, UZAR M Performance analysis of rule-based classification and deep learning method for automatic road extraction[J]. International Journal of Engineering and Geosciences, 2023, 8 (1): 83- 97
[27]   王富友, 王浦全 3D打印技术在骨关节外科领域的应用与发展[J]. 陆军军医大学学报, 2022, 44 (15): 1508- 1515
WANG Fuyou, WANG Puquan Application and development of 3D printing technology in bone and joint surgery[J]. Journal of Army Medical University, 2022, 44 (15): 1508- 1515
[1] Yong ZHANG,Shen-gong PAN,Shui-chang LIU,Feng-zhao MAO,Qing-yu WANG,He LIU,Yi-fei YIN. Optimization and experimental study of heat transfer in liquid-cooled plate of full-featured disturbance element cells[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1157-1164.
[2] Ya-xian ZHAO,Ye-cheng MA,Zi-qiang CHENG,Xin CAO,Yong LIU,Gao-rong HAN. Micromechanical properties of electronic glass using nanoindentation technology[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 984-990.
[3] Xin SONG,Wei-jie FAN,Jiang-hong MAO,Wei-liang JIN. Dynamic control effect of chloride in concrete based on multi-level electromigration[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 511-518.
[4] Nan-guo JIN,Jia-hao HE,Chuan-qing FU,Xian-yu JIN. Study on experimental method and morphology of accelerated non-uniform corrosion of steel bars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 483-490.
[5] WANG Haiyan, CHENG Yan . Dual service selection method based on coefficient of variation[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1197-1204.
[6] QIN Ya-nan, YANG Yu, SHI Wei, MA Wei-chen, ZHOU Hao, CEN Ke-fa. Uniform distribution characteristics of reducing agent on hybrid SNCR-SCR process[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1255-1261.
[7] WAN Yi, HUANG Wei-wei, ZHENG Cheng-hang, GAO Xiang, CEN Ke-fa. Spray characteristics of wet electrostatic precipitator[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 336-343.