Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (4): 741-749    DOI: 10.3785/j.issn.1008-973X.2025.04.009
    
Deformation characteristics analysis of free single pile in soft clay induced by dewatering in confined aquifer
Hongwei YING1,2(),Guan LIU1,Huiying GAO1,Lisha ZHANG1,3,Yifan XIONG1
1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210024, China
2. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
3. Department of Civil Engineering, Hangzhou City University, Hangzhou 310015, China
Download: HTML     PDF(1198KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The confined water dewatering leads to consolidation in the overlying aquitard, subsequently affecting the operational performance of the current pile foundation and potentially resulting in catastrophic outcomes. A pile equilibrium equation was derived using the load transfer method, based on existing research on soil layer consolidation induced by instantaneous dewatering in the aquifer. The semi-analytical solutions for the deformation characteristics of a free single friction pile in a homogeneous aquitard caused by instantaneous pressure-relief pumping were obtained, and the solution was verified by the degeneration to “virtual soil pile” and the comparison with the FEM numerical solution. Based on a pile foundation project case, the development process of aquitard settlement with time and depth, the stress and deformation characteristics of a free single pile induced by pumping down confined water were revealed, and a parametric impact analysis was carried out. Results show that the consolidation of the aquitard induced by instantaneous dewatering in the underlying confined aquifer and its impact on free single piles develop from bottom to top, contrary to the traditional understanding in pile foundation engineering of a “top-down” progression. The larger the pile diameter, the smaller the pile head settlement, but the greater the pile axial force. The greater the drawdown of confined water, the faster the development of skin friction, leading to increased axial force and pile head settlement. As the pile length increases, the axial force also increases. The depth of the neutral point exhibits a relative downward trend with increasing pile length, and an increase in pile length significantly reduces settlement for unpierced single piles.



Key wordsconsolidation      load transfer method      negative skin friction      confined water dewatering      axially loaded single pile     
Received: 20 December 2023      Published: 25 April 2025
CLC:  TU 47  
Fund:  中国博士后科学基金资助项目(2021M690883);国家自然科学基金资助项目(51678523);中央高校基本科研业务费资助项目(B200201012).
Cite this article:

Hongwei YING,Guan LIU,Huiying GAO,Lisha ZHANG,Yifan XIONG. Deformation characteristics analysis of free single pile in soft clay induced by dewatering in confined aquifer. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 741-749.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.04.009     OR     https://www.zjujournals.com/eng/Y2025/V59/I4/741


降承压水引起的软黏土中自由单桩变形特性分析

抽降承压水引起上覆弱透水层发生释水固结沉降,影响既有桩基础服役性能甚至导致灾变. 在大面积瞬时减压降水引起土层固结沉降研究的基础上,采用荷载传递法建立桩体平衡方程,解得瞬时减压降水引发均质弱透水层中自由摩擦单桩受力变形的半解析解,通过退化至“虚土桩”及与有限元数值解的对比验证半解析解的合理性. 以实际工程为背景构建算例,揭示减压降水作为诱因时弱透水层沉降随时间和深度的发展过程以及自由单桩的受力变形特性,并进行参数影响分析. 结果表明,抽降承压水引起的弱透水层固结和对自由单桩的影响均自下而上发展,与桩基工程传统认识的“上部先于下部发展”不同;桩径越大,桩顶沉降越小但桩身轴力越大;承压水降深越大,桩侧摩阻力发展越快,桩身轴力和桩顶沉降越大;桩长越长,桩身轴力越大. 中性点深度随桩长增加有相对下移的趋势,增加桩长可显著减小未打穿弱透水层的单桩沉降.


关键词: 固结,  荷载传递法,  负摩阻力,  承压水降水,  轴向受荷单桩 
Fig.1 Mechanical model of pile vertical response in aquitard induced by confined water dewatering
Fig.2 Shaft load transfer model
Fig.3 Single pile force analysis diagram (full elastic stage of soil adjacent to pile)
Fig.4 Single pile force analysis diagram (plastic stage of soil adjacent to pile tip)
Fig.5 Single pile force analysis diagram (plastic stage of soil adjacent to pile head)
Fig.6 Finite element model of interaction between aquitard and single pile
Fig.7 Variation of pile head settlement with consolidation time
Fig.8 Influence of consolidation time on skin friction and axial force
Fig.9 Influence of consolidation time on vertical strain of soil layer
Fig.10 Influence of pile diameter on skin friction and axial force
Fig.11 Variation of pile head settlement with consolidation time for different pile diameters
Fig.12 Influence of pile length on skin friction and axial force
Fig.13 Variation of pile head settlement with consolidation time for different pile lengths
Fig.14 Influence of drawdown depth on settlement and axial force
[1]   骆冠勇, 潘泓, 曹洪, 等 承压水减压引起的沉降分析[J]. 岩土力学, 2004, 25 (Suppl.2): 196- 200
LUO Guanyong, PAN Hong, CAO Hong, et al Analysis of settlements caused by decompression of confined water[J]. Rock and Soil Mechanics, 2004, 25 (Suppl.2): 196- 200
doi: 10.3969/j.issn.1000-7598.2004.z2.040
[2]   LIU J C, LEI G G, MEI G X One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater[J]. Journal of Central South University, 2012, 19 (1): 282- 286
doi: 10.1007/s11771-012-1002-9
[3]   徐进, 王少伟, 杨伟涛 水位变化下可压缩土层的黏弹性耦合变形分析[J]. 岩土力学, 2020, 41 (3): 1065- 1073
XU Jin, WANG Shaowei, YANG Weitao Analysis of coupled viscoelastic deformation of soil layer with compressible constituent due to groundwater level variation[J]. Rock and Soil Mechanics, 2020, 41 (3): 1065- 1073
[4]   徐进, 杨伟涛, 陈征, 等 水位下降诱发含水层–弱透水层1维黏弹性固结分析[J]. 工程科学与技术, 2021, 53 (5): 89- 97
XU Jin, YANG Weitao, CHEN Zheng, et al One-dimensional viscoelastic consolidation analysis of aquifer–aquitard due to drawdown of water level[J]. Advanced Engineering Sciences, 2021, 53 (5): 89- 97
[5]   谢康和, 陶立为, 王玉林, 等 越流系统中弱透水层的一维固结解及分析[J]. 沈阳工业大学学报, 2012, 34 (5): 581- 585
XIE Kanghe, TAO Liwei, WANG Yulin, et al One-dimensional consolidation solution and analysis for aquitard in leakage system[J]. Journal of Shenyang University of Technology, 2012, 34 (5): 581- 585
[6]   YAO J F, XIE K H, HUANG D Z. Analytical solution for one-dimensional consolidation of soil layer induced by time-dependent groundwater drawdown [J]. Applied Mechanics and Materials , 2013, 405/406/407/408: 83–88.
[7]   吴浩, 谢康和, 黄大中 第二类越流系统中结构性弱透水土层一维固结解析解[J]. 岩土工程学报, 2014, 36 (9): 1688- 1695
WU Hao, XIE Kanghe, HUANG Dazhong Analytical solution for one-dimensional consolidation of structured aquitard soils in second kind of leakage system[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (9): 1688- 1695
doi: 10.11779/CJGE201409016
[8]   张玮鹏, 谢康和, 吕文晓, 等 抽水引起的有起始比降饱和土固结解析解[J]. 中南大学学报: 自然科学版, 2016, 47 (3): 875- 881
ZHANG Weipeng, XIE Kanghe, LÜ Wenxiao, et al Analytical solution to one-dimensional consolidation of saturated soil with threshold gradient induced by groundwater pumping[J]. Journal of Central South University: Science and Technology, 2016, 47 (3): 875- 881
[9]   CHEN R P, ZHOU W H, CHEN Y M Influences of soil consolidation and pile load on the development of negative skin friction of a pile[J]. Computers and Geotechnics, 2009, 36 (8): 1265- 1271
doi: 10.1016/j.compgeo.2009.05.011
[10]   孔纲强, 陈力恺, 刘汉龙 考虑土体非线性固结沉降的复合地基桩侧负摩阻力研究[J]. 中国公路学报, 2013, 26 (3): 37- 43
KONG Gangqiang, CHEN Likai, LIU Hanlong Study on negative skin friction of pile in composite foundation considering nonlinear consolidation of soil[J]. China Journal of Highway and Transport, 2013, 26 (3): 37- 43
doi: 10.3969/j.issn.1001-7372.2013.03.002
[11]   赵明华, 胡倩, 杨超炜, 等 考虑地基土非线性固结的桩侧负摩阻力计算方法研究[J]. 岩土工程学报, 2016, 38 (8): 1417- 1424
ZHAO Minghua, HU Qian, YANG Chaowei, et al Negative skin friction of piles considering nonlinear consolidation of soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (8): 1417- 1424
doi: 10.11779/CJGE201608008
[12]   LIU J, GAO H, LIU H Finite element analyses of negative skin friction on a single pile[J]. Acta Geotechnica, 2012, 7 (3): 239- 252
doi: 10.1007/s11440-012-0163-x
[13]   YAO W, LIU Y, CHEN J Characteristics of negative skin friction for superlong piles under surcharge loading[J]. International Journal of Geomechanics, 2012, 12 (2): 90- 97
doi: 10.1061/(ASCE)GM.1943-5622.0000167
[14]   贾煜, 宋福贵, 王炳龙, 等 基于改进荷载传递法计算降水引起的基桩沉降[J]. 岩土力学, 2015, 36 (1): 68- 74
JIA Yu, SONG Fugui, WANG Binglong, et al Modified load transfer method for calculation of foundation pile settlement due to dewatering[J]. Rock and Soil Mechanics, 2015, 36 (1): 68- 74
[15]   刘御刚. 抽降水对高速铁路桥梁桩基的影响分析[D]. 长沙: 中南大学, 2014: 1–97.
LIU Yugang. Analysis on influence imposed by exploiting groundwater on bridges pile foundation of high-speed railway [D]. Changsha : Central South University, 2014: 1–97.
[16]   江留慧. 抽降水下既有建筑物基桩承载力性状分析[D]. 镇江: 江苏大学, 2020: 1–113.
JIANG Liuhui. Analysis of bearing capacity behavior of existing building foundation pile by pumping water [D]. Zhenjiang: Jiangsu University, 2020: 1–113.
[17]   刘红军, 上官士青, 朴春德, 等 基于数学规划算法的单桩沉降计算分析研究[J]. 岩土工程学报, 2012, 34 (5): 868- 873
LIU Hongjun, SHANGGUAN Shiqing, PIAO Chunde, et al Calculation and analysis of single pile settlement based on mathematical programming algorithm[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (5): 868- 873
[18]   谢新宇, 王忠瑾, 王金昌, 等 考虑桩土非线性的超长桩沉降计算方法[J]. 中南大学学报: 自然科学版, 2013, 44 (11): 4664- 4671
XIE Xinyu, WANG Zhongjin, WANG Jinchang, et al Calculation method for settlement of super-long pile considering nonlinearity of pile and soils[J]. Journal of Central South University: Science and Technology, 2013, 44 (11): 4664- 4671
[19]   TERZAGHI K. 1925. Principles of soil mechanics. IV. Settlement and consolidation of clay. [J]. Engineering News-Record , 1925, 95: 874–878.
[20]   TAO L W, XIE K H, HUANG D Z. Analytical solution for one-dimensional consolidation of soft soil induced by water head difference [C]// Proceedings of the International Conference on E-Product E-Service and E-Entertainment . [S.l.]: IEEE, 2010: 1–4.
[21]   欧孝夺, 白露, 吕政凡, 等 自平衡试桩Q-s曲线理论解析方法研究[J]. 铁道科学与工程学报, 2022, 19 (2): 399- 408
OU Xiaoduo, BAI Lu, LÜ Zhengfan, et al Research on theoretical analytical method of Q-s curves of self-balancing test piles[J]. Journal of Railway Science and Engineering, 2022, 19 (2): 399- 408
[22]   李连祥, 李先军, 成晓阳, 等 考虑圆孔扩张理论的支盘桩荷载传递法[J]. 中国公路学报, 2018, 31 (8): 20- 29
LI Lianxiang, LI Xianjun, CHENG Xiaoyang, et al Load transfer method for squeezed and branch piles considering cavity expansion theory[J]. China Journal of Highway and Transport, 2018, 31 (8): 20- 29
doi: 10.3969/j.issn.1001-7372.2018.08.002
[23]   李术才, 陈红宾, 张晓, 等 粉质黏土隧道超前支护效应试验研究[J]. 中南大学学报: 自然科学版, 2019, 50 (4): 946- 956
LI Shucai, CHEN Hongbin, ZHANG Xiao, et al Experimental study on advanced support effect in silty clay tunnel[J]. Journal of Central South University: Science and Technology, 2019, 50 (4): 946- 956
[24]   陈岳林. 温州软土地基桩基变形性状研究[D]. 杭州: 浙江大学, 2005: 1–102.
CHEN Yuelin. Settlement behavior of pile foundation in Wenzhou soft ground [D]. Hangzhou: Zhejiang University, 2005: 1–102.
[25]   王宗琴, 张云鹏, 田乙, 等 考虑固结的新近吹填场地桩侧负摩阻力分布特性[J]. 哈尔滨工业大学学报, 2022, 54 (8): 108- 116
WANG Zongqin, ZHANG Yunpeng, TIAN Yi, et al Distribution characteristics of negative skin friction on piles installed at dredger fill sites considering consolidation effect[J]. Journal of Harbin Institute of Technology, 2022, 54 (8): 108- 116
doi: 10.11918/202104053
[26]   叶观宝, 郑文强, 张振 大面积填土场地中摩擦型桩负摩阻力分布特性研究[J]. 岩土力学, 2019, 40 (Suppl.1): 440- 448
YE Guanbao, ZHENG Wenqiang, ZHANG Zhen Investigation on distribution of negative friction of frictional piles in large filling sites[J]. Rock and Soil Mechanics, 2019, 40 (Suppl.1): 440- 448
[27]   吴爽爽, 胡新丽, 章涵, 等 嵌岩桩负摩阻力现场试验与计算方法研究[J]. 岩土力学, 2019, 40 (9): 3610- 3617
WU Shuangshuang, HU Xinli, ZHANG Han, et al Field test and calculation method of negative skin friction of rock-socketed piles[J]. Rock and Soil Mechanics, 2019, 40 (9): 3610- 3617
[28]   贺志军, 雷皓程, 夏张琦, 等 多层软土地基中单桩沉降与内力位移分析[J]. 岩土力学, 2020, 41 (2): 655- 666
HE Zhijun, LEI Haocheng, XIA Zhangqi, et al Analysis of settlement and internal force displacement of single pile in multilayer soft soil foundation[J]. Rock and Soil Mechanics, 2020, 41 (2): 655- 666
[29]   王奎华, 吕述晖, 吴文兵, 等 层状地基中基于虚土桩模型的单桩沉降计算方法[J]. 工程力学, 2013, 30 (7): 75- 83
WANG Kuihua, LÜ Shuhui, WU Wenbing, et al A new calculation method for the settlement of single pile based on virtual soil-pile model in layered soils[J]. Engineering Mechanics, 2013, 30 (7): 75- 83
doi: 10.6052/j.issn.1000-4750.2012.03.0171
[30]   陈仁朋, 周万欢, 曹卫平, 等 改进的桩土界面荷载传递双曲线模型及其在单桩负摩阻力时间效应研究中的应用[J]. 岩土工程学报, 2007, 29 (6): 824- 830
CHEN Renpeng, ZHOU Wanhuan, CAO Weiping, et al Improved hyperbolic model of load-transfer for pile-soil interface and its application in study of negative friction of single piles considering time effect[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (6): 824- 830
doi: 10.3321/j.issn:1000-4548.2007.06.006
[31]   曹卫平 桩土界面荷载传递双曲线模型的改进及其应用[J]. 岩石力学与工程学报, 2009, 28 (1): 144- 151
CAO Weiping An improved load transfer hyperbolic model for pile-soil interface and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (1): 144- 151
doi: 10.3321/j.issn:1000-6915.2009.01.019
[1] Yayuan HU,Fei YE. Constitutive model of saturated fractured porous rock mass based on mixture theory[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1446-1456.
[2] An-feng HU,Hao JIANG,Zhi-rong XIAO,Sen-lin XIE,Zhao-qi GONG,Wen-qian LI. Nonlinear rheological consolidation analysis of soil around tunnel based on fractional order model[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2227-2234.
[3] Xiao-wu TANG,Yuan ZOU,Wei-kang LIN,Wen-fang ZHAO,Tian-qi WANG. Model experiment on improving bearing capacity of perforated pipe piles by vacuum consolidation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1320-1327.
[4] Hai-chao SUN,Wen-jun WANG,Dao-sheng LING. Mechanical properties and microstructure of solidified soil with low cement content[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 530-538.
[5] Xin-shan ZHUANG,Han-wen ZHAO,Jun-xiang WANG,Yong-jie HUANG. Experimental study of dynamic elastic modulus and damping ratio of expansive soil in Hefei[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 759-766.
[6] Shao-heng HE,Tang-dai XIA,Bing-qi YU,Zhi DING,Min GAO,Hua-feng SHAN. Effect of temperature on volume strain and consolidation characteristics of calcareous sand[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 221-232.
[7] Song-lin YU,Han KE,Liang-tong ZHAN,Tao MENG,Yun-min CHEN,Ce YANG. Engineering properties of excavated soil and analysis of post-construction settlement and capacity for pit landfill[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2364-2376.
[8] Liang-gui YU,Jian ZHOU,Xiao-gui WEN,Jie XU,Ling-hui LUO. Factors influencing permeability anisotropy of remolded kaolin[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 275-283.
[9] LV Hua-bin, ZHANG Yi-ping, YI Li-da. Newly developed multifunction device for consolidation, permeability and gas-injection tests[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1278-1283.
[10] WU Jian-qi, YANG Xiao, XU Xu, LIU Fei-yu. Cyclic triaxial tests on saturated red clay under partially drained condition[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1309-1316.
[11] ZHENG Ling-wei, XIE Xin-yu, XIE Kang-he, LI Jin-zhu, LIU Yi-min. Test and application research advance on foundation reinforcement by electro-osmosis method[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1064-1073.
[12] ZANG Jun chao, ZHENG Ling wei, XIE Xin yu, CAO Li wen, LI Zhuo ming. Electro-osmosis reinforcement experiment of life source polluted soil[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 245-254.
[13] HU Ya yuan, YANG Qiu hua. Unified simplified settlement formula based on YinGraham’s rheological model[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1009-1017.
[14] ZHENG Jian,LI Yu chao,CHEN Yun min. Centrifuge test modeling of impact of sediment consolidation on contaminant transportation[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 8-15.
[15] LIANG Rong-zhu, PAN Jin-long, LIN Cun-gang, SHAN Hua-feng, SUN Lian-wei. Settlement boundary induced by shield tunnelling in soft ground[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1148-1154.