Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (2): 384-393    DOI: 10.3785/j.issn.1008-973X.2025.02.016
    
Performance of Janus solar interface evaporator based on carbon nanotube
Hongyu GE1(),Zhenhua FANG1,Junnan JIANG1,Jintao AN2,Xiaohua LIU1,*()
1. Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
2. Lanzhou Institute of Physics, Lanzhou 730000, China
Download: HTML     PDF(2689KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A method for fabricating Janus solar interfacial evaporators based on multi-walled carbon nanotube (MWCNTs) was proposed by combining MWCNTs, polydimethylsiloxane (PDMS) and polyvinyl alcohol (PVA) sponges. Only a spraying process was needed to obtain the Janus solar interfacial evaporator with a hydrophobic upper layer and a hydrophilic lower layer. Experimental investigations were conducted on the evaporator for water absorption, self-floatability, photo-thermal conversion efficiency, evaporation performance, and salt resistance. Results showed that the evaporite with carbon nanotubes mass concentration of 2.0 mg/mL had the best evaporation performance compared with other concentrations, and possessed good water-absorbing, self-floating and salt-resistant properties. The maximum evaporation rate reaches 1.79 kg/(m2·h), which is 3.9 times of the volumetric evaporation rate without evaporator under the solar radiation of 1 kW/m2. The evaporation interface not only has no salt crystals precipitated but also has the highest evaporation rate of 1.68 kg/(m2·h) after continuous evaporation for 10 h at the mass fraction of 3.5% of NaCl solution.



Key wordssolar      interfacial evaporation      photothermal conversion      carbon nanotube      evaporation rate     
Received: 18 December 2023      Published: 11 February 2025
CLC:  TK 519  
Fund:  大连市科技创新基金资助项目(2021JJ12GX024).
Corresponding Authors: Xiaohua LIU     E-mail: hongyu.ge@foxmail.com;lxh723@dlut.edu.cn
Cite this article:

Hongyu GE,Zhenhua FANG,Junnan JIANG,Jintao AN,Xiaohua LIU. Performance of Janus solar interface evaporator based on carbon nanotube. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 384-393.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.02.016     OR     https://www.zjujournals.com/eng/Y2025/V59/I2/384


基于碳纳米管的Janus太阳能界面蒸发体性能

提出基于多壁碳纳米管的Janus结构太阳能界面蒸发体的制备方法,将多壁碳纳米管(MWCNTs)、聚二甲基硅氧烷(PDMS)和聚乙烯醇(PVA)海绵进行组合,只需要喷涂工艺,即可获得上层疏水、下层亲水的Janus结构太阳能界面蒸发体,针对该蒸发体开展吸水性、自漂浮性、光热转换性能、蒸发性能及抗盐性能的实验研究. 研究结果表明,与其他浓度相比,碳纳米管质量浓度为2.0 mg/mL的蒸发体的蒸发性能最佳,具备良好的吸水性能、自漂浮性能及抗盐性能. 在辐照度为1 kW/m2的光照条件下,最大蒸发速率达到1.79 kg/(m2·h),为无蒸发体的容积式蒸发速率的3.9倍. 当料液质量分数为3.5%时,连续蒸发10 h后的蒸发界面无盐晶体析出,蒸发速率最高为1.68 kg/(m2·h).


关键词: 太阳能,  界面蒸发,  光热转换,  碳纳米管,  蒸发速率 
Fig.1 Preparation schematic of MWCNTs evaporator
Fig.2 Schematic illustration of solar interfacial evaporation experiment system
序号实验设备精度量程标准不
确定度
Emin/%Emax/%
1电子天平±1 mg0~1 000 g±0.6 mg0.0390.11
2刻度尺±1 mm0~20 cm±0.6 mm0.020.02
3红外热像仪±2%测量值0~350 ℃±1.2%测量值1.21.2
4光功率计±5%测量值4~20 000 W/m2±2.9%测量值2.92.9
Tab.1 Accuracy, experimental uncertainty and error for various measuring instrument
Fig.3 Water absorption and self-floating test of MWCNTs evaporator
Fig.4 Dynamic process of deionized water droplet impact
Fig.5 3D structure and microstructure of PVA sponge and MWCNTs evaporator
Fig.6 Absorption spectrum of MWCNTs evaporator
Fig.7 Change in upper surface temperature of MWCNTs evaporate under solar irradiance of 1 kW/m2
Fig.8 Upper surface thermal image of temperature change of MWCNTs evaporate under solar irradiance of 1 kW/m2
Fig.9 Evaporation performance of MWCNTs evaporate
Fig.10 Self-diffusion of NaCl crystal during evaporation of MWCNTs evaporate
Fig.11 Evaporation performance of MWCNTs evaporate in NaCl solution
[1]   郑宏飞. 太阳能海水淡化原理与技术 [M]. 北京: 化学工业出版社, 2012.
[2]   OTANICAR T P, PHELAN P E, PRASHER R S, et al Nanofluid based direct absorption solar collector[J]. Journal of Renewable and Sustainable Energy, 2010, 2: 033102
doi: 10.1063/1.3429737
[3]   PRASHER R, PHELAN P E, BHATTACHARYA P Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid)[J]. Nano Letters, 2006, 6 (7): 1529- 1534
doi: 10.1021/nl060992s
[4]   GHADIMI A , SAIDUR R, METSELAAR H S C. A review of nanofluid stability properties and characterization in stationary conditions[J]. International Journal of Heat and Mass, 2011, 54 (17/18): 4051- 4068
[5]   CHEN Y Y, QUAN X J, WANG Z Y, et al Stably dispersed high-temperature Fe3O4/silicone oil for direct solar thermal energy harvest[J]. Journal of Materials Chemistry A, 2016, 4 (44): 17503- 17511
doi: 10.1039/C6TA07773K
[6]   YU Fa, CHEN Y Y, LIANG X B, et al Dispersion stability of thermal nanofluids[J]. Progress in Natural Science-Materials International, 2017, 27 (5): 531- 542
doi: 10.1016/j.pnsc.2017.08.010
[7]   GHASEMI H, NI G, MARCONNET A M, et al Solar steam generation by heat localization[J]. Nature Communications, 2014, 5: 4449
doi: 10.1038/ncomms5449
[8]   WANG Z H, LIU Y M, TAO P, et al Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface[J]. Small, 2014, 10 (16): 3234- 3239
doi: 10.1002/smll.201401071
[9]   DAO V D, VU N H, YUN S, Recent advances and challenges for solar-driven water evaporation system toward applications [J]. Nano Energy , 2020, 68: 104324.
[10]   ZHANG P P, LIAO Q H, YAO H Z, et al Direct solar steam generation system for clean water production[J]. Energy Storage Materials, 2019, 18: 429- 446
doi: 10.1016/j.ensm.2018.10.006
[11]   YANG B, ZHANG Z M, LIU P T, et al Flatband λ-Ti3O5 towards extraordinary solar steam generation[J]. Nature, 2023, 622 (7983): 499- 506
doi: 10.1038/s41586-023-06509-3
[12]   LI Y L, CUI X X, ZHAO M Y, et al Facile preparation of a robust porous photothermal membrane with antibacterial activity for efficient solar-driven interfacial water evaporation[J]. Journal of Materials Chemistry A, 2019, 7 (2): 704
doi: 10.1039/C8TA09223K
[13]   LI L, ZANG L L, ZHANG S C, et al GO/CNT-silica Janus nanofibrous membrane for solar-driven interfacial steam generation and desalination[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111: 191- 197
doi: 10.1016/j.jtice.2020.03.015
[14]   WANG Y L, LIU H, CHEN C J, et al All natural, high efficient groundwater extraction via solar steam/vapor generation[J]. Advanced Sustainable Systems, 2019, 3 (1): 1800055
doi: 10.1002/adsu.201800055
[15]   JIANG Q S, TIAN L M, LIU K K, et al Bilayered biofoam for highly efficient solar steam generation[J]. Advanced Materials, 2016, 28 (42): 9400- 9407
doi: 10.1002/adma.201601819
[16]   LI Y J, GAO T T, YANG Z, et al Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination[J]. Nano Energy, 2017, 41: 201- 209
doi: 10.1016/j.nanoen.2017.09.034
[17]   MA S N, CHIU C P, ZHU Y J, et al Recycled waste black polyurethane sponges for solar vapor generation and distillation[J]. Applied energy, 2017, 206: 63- 69
doi: 10.1016/j.apenergy.2017.08.169
[18]   WANG G, FU Y, GUO A K, et al Reduced graphene oxide-polyurethane nanocomposite foams as a reusable photo-receiver for efficient solar steam generation[J]. Chemistry of Materials, 2017, 29: 5629- 5935
doi: 10.1021/acs.chemmater.7b01280
[19]   HU X Z, XU W C, ZHOU L, et al Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun[J]. Advanced Materials, 2017, 29 (5): 1604031
doi: 10.1002/adma.201604031
[20]   GUO C L, MIAO E D, ZHAO J X, et al Paper-based integrated evaporation device for efficient solar steam generation through localized heating[J]. Solar Energy, 2019, 188: 1283- 1291
doi: 10.1016/j.solener.2019.07.023
[21]   JIA C, LI T, CHEN C J, et al Scalable, anisotropic transparent paper directly from wood for light management in solar cells[J]. Nano Energy, 2017, 36: 366- 373
doi: 10.1016/j.nanoen.2017.04.059
[22]   LI Q W, ZHAO X, LI L X, et al Facile preparation of polydimethylsiloxane/carbon nanotubes modified melamine solar evaporators for efficient steam generation and desalination[J]. Journal of Colloid and Interface Science, 2021, 584: 602- 609
doi: 10.1016/j.jcis.2020.10.002
[23]   ZHAO X, ZHA X J, PU J H, et al Macroporous three-dimensional MXene architectures for highly efficient solar steam generation[J]. Journal of Materials Chemistry A, 2019, 7 (17): 10446
doi: 10.1039/C9TA00176J
[24]   LI N, YIN D D, XU L L, et al High-quality ultralong copper sulphide nanowires for promising applications in high efficiency solar water evaporation[J]. Materials Chemistry Frontiers, 2019, 3 (3): 394- 398
doi: 10.1039/C8QM00549D
[25]   李吉焱, 景艳菊, 邢郭宇, 等 耐盐型太阳能驱动界面光热材料及蒸发器的研究进展[J]. 化工进展, 2023, 42 (7): 3611- 3622
LI Jiyan, JING Yanju, XING Guoyu, et al Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator[J]. Chemical Industry and Engineering Progress, 2023, 42 (7): 3611- 3622
[26]   ZHU B, KOU H, LIU Z X, et al Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater[J]. ACS Applied Materials and Interfaces, 2019, 11 (38): 35005- 35014
doi: 10.1021/acsami.9b12806
[27]   HAN X N, ZANG L L, ZHANG S C, et al Hydrophilic polymer-stabilized porous composite membrane for water evaporation and solar desalination[J]. RSC Advances, 2020, 10 (5): 2507- 2512
doi: 10.1039/C9RA09667A
[28]   YANG X D, YANG Y B, FU L N, et al An ultrathin flexible 2D membrane based on single-walled nanotube: MoS2 hybrid film for high-performance solar steam generation[J]. Advanced Functional Materials, 2018, 28 (3): 1704505
doi: 10.1002/adfm.201704505
[29]   EL-D H T, ETTOUNEY H M. Fundamentals of salt water desalination [M]. Amsterdam: Elsevier, 2002.
[30]   RAHBAR N, ESFAHANI J A Experimental study of a novel portable solar still by utilizing the heatpipe and thermoelectric module[J]. Desalination, 2012, 284: 55- 61
doi: 10.1016/j.desal.2011.08.036
[31]   RAJASEENIVASAN T, NELSON R P, SRITHAR K An experimental investigation on a solar still with an integrated flat plate collector[J]. Desalination, 2014, 347: 131- 137
doi: 10.1016/j.desal.2014.05.029
[32]   RAHBAR N, ESFAHANI J A, ASADI A An experimental investigation on productivity and performance of a new improved design portable asymmetrical solar still utilizing thermoelectric modules[J]. Energy Conversion and Management, 2016, 118: 55- 62
doi: 10.1016/j.enconman.2016.03.052
[33]   KHATTAB N M, El SHENAWY E T Optimal operation of thermoelectric cooler driven by solar thermoelectric generator[J]. Energy Conversion and Management, 2006, 47 (4): 407- 426
doi: 10.1016/j.enconman.2005.04.011
[34]   ZHANG L N, XU Z Y, ZHAO L, et al Passive, high-efficiency thermally-localized solar desalination[J]. Energy and Environmental Science, 2021, 14 (4): 1771- 1793
[35]   KARAHAN M, EREN R Experimental investigation of the effect of fabric parameters on static water absorption in terry fabrics[J]. Fibres and Textiles in Eastern Europe, 2006, 14 (2): 59- 63
[36]   PETRULYTE S, BALTAKYTE R Static water absorption in fabrics of different pile height[J]. Fibres and Textiles in East Europe, 2009, 17 (3): 60- 65
[37]   CRUZ Ja, LEITÃO A, SILVEIRA D, et al Study of moisture absorption characteristics of cotton terry towel fabrics[J]. Procedia Engineering, 2017, 200: 289- 298
[38]   ASHISH C K, SUJITH KUMAR C S, RAJ A K, et al. Experimental evaluation on the capillarity effect of different wicking structure incorporated in a patterned absorber facilitating solar interfacial evaporation [J]. Journal of Thermal Analysis and Calorimetry , 2022, 147(17): 9865–9886.
[39]   王开珉, 张玉杰, 刘晓华, 等 液滴撞击加热亲水管壁后的反弹和中心射流[J]. 浙江大学学报: 工学版, 2022, 56 (6): 1191- 1198
WANG Kaimin, ZHANG Yujie, LIU Xiaohua, et al Droplet rebound and central jet after impacting hydrophilic tubular surface[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (6): 1191- 1198
[40]   WANG K M, CHEN H, GE H Y, et al Study of impact velocity and curvature ratio on the dynamic characteristics of double droplets impacting super-hydrophobic tubes[J]. Physics of Fluids, 2021, 33 (1): 013301
doi: 10.1063/5.0035624
[41]   WANG K M, LIU J W, YANG X W, et al Experimental study on the droplet dynamics after impacting an inclined superhydrophobic surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 675: 132016
doi: 10.1016/j.colsurfa.2023.132016
[42]   WANG K M, YANG X W, LIU J W, et al Directional control of the size and velocity of micro-droplets ejected after impacting a super-hydrophobic surface[J]. Experimental Thermal and Fluid Science, 2023, 149: 111012
doi: 10.1016/j.expthermflusci.2023.111012
[43]   ZHANG Q, LI L, JIANG B, et al Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination[J]. ACS Applied Materials and Interfaces, 2020, 12 (25): 28179- 28187
doi: 10.1021/acsami.0c05806
[44]   YOU D Y, YANG W T, ZHAO Y J, et al Salt-tolerant and low-cost flame-treated aerogel for continuously efficient solar steam generation[J]. Solar Energy, 2021, 227: 303- 311
doi: 10.1016/j.solener.2021.09.024
[45]   LIU G H, XU J L, WANG K Y Solar water evaporation by black photothermal sheets[J]. Nano Energy, 2017, 41: 269- 284
doi: 10.1016/j.nanoen.2017.09.005
[46]   LIND M A, PETTIT R B, MASTERSON K D The sensitivity of solar transmittance, reflectance and absorptance to selected averaging procedures and solar irradiance distributions[J]. Journal of Solar Energy Engineering, 1980, 102 (1): 34- 40
doi: 10.1115/1.3266119
[47]   DENG Z Y, MIAO L, LIU P F, et al Extremely high water-production created by a nanoink-stained PVA evaporator with embossment structure[J]. Nano Energy, 2019, 55: 368- 376
doi: 10.1016/j.nanoen.2018.11.002
[48]   ASTM. Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface: ASTM G173-03(2020) [S]. Pennsylvania: ASTM, 2020.
[49]   JIN Y, CHANG J, SHI Y, et al A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation[J]. Journal of Materials Chemistry A, 2018, 6 (17): 7942- 7949
doi: 10.1039/C8TA00187A
[50]   ZHANG Y X, XIONG T, SURESH L, et al Guaranteeing complete salt rejection by channeling saline water through fluidic photothermal structure toward synergistic zero energy clean water production and in situ energy generation[J]. ACS Energy Letters, 2020, 5 (11): 3397- 3404
doi: 10.1021/acsenergylett.0c01797
[51]   MITSUHIKO M, ASUKA F, TAKAYUKI E, et al Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages[J]. Science, 2024, 304 (5674): 1134- 1137
[52]   KUSHI K, JUNICHI I, GIKA S, et al Structural changes of water in poly(vinyl alcohol) hydrogel during dehydration[J]. Journal of Chemical Physics, 2014, 140 (4): 044909
doi: 10.1063/1.4862996
[53]   张敬敬. 基于太阳能界面光热效应的脱盐净水研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
ZHANG Jingjing. Study on desalination and water purification based on interfacial photothermal effect of solar energy [D]. Harbin: Harbin Institute of Technology, 2022.
[54]   WANG Z X, HORSEMAN T, STRAUB A P, et al Pathways and challenges for efficient solar-thermal desalination[J]. Science Advances, 2019, 5 (7): eaax0763
doi: 10.1126/sciadv.aax0763
[55]   李桐, 邱国玉 基于稳定氢氧同位素的盐水与纯水蒸发差异分析[J]. 热带地理, 2018, 38 (6): 857- 865
LI Tong, QIU Guoyu Hydrogen and oxygen stable isotope study on the difference of evaporation between salt and pure water[J]. Tropical Geography, 2018, 38 (6): 857- 865
[56]   李阳, 贾瑞亮, 周金龙, 等 干旱地区高盐度水面蒸发试验研究[J]. 水文, 2016, 36 (6): 24- 27
LI Yang, JIA Ruiliang, ZHOU Jinlong, et al Experimental study on high salinity water surface evaporation in arid areas[J]. Journal of China Hydrology, 2016, 36 (6): 24- 27
[1] Sitong LI,Hongyu GE,Peisen KANG,Lin MU,Xiaohua LIU. Numerical simulation of interfacial evaporation system performance with plate substrate structure[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1498-1504.
[2] Wei LUO,Zuotao YAN,Jiahao GUAN,Jian HAN. Solar cell defect segmentation model based on improved SegFormer[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2459-2468.
[3] Tingfang YU,Ao FANG,Longfei LI,Xun XU. Integration method of trough solar-assisted coal-fired power generation system[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2330-2337.
[4] Guo-qing HE,Yi-tian TANG. Influence of exhaust wind cowls on wind driven ventilation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 591-597.
[5] Xiao-yi YU,Da-qian RAO,Chang-xing HU,Mei-juan XU. Parameter estimation of solar cell engineering model and model application[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 63-70.
[6] Li XIAO,Yuan-hao CHEN,Chang-xing LIANG,Jian-xi YAO. Review on metal-oxide materials applied in planar perovskite solar cells[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1576-1584.
[7] Guo-qing HE,Da LV. Enhancing solar chimney ventilation efficiency by insertion of transparent panel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2260-2266.
[8] Kun LIU,Xi WEN,Min-ming HUANG,Xin-xin YANG,Jing-kun MAO. Solar cell defect enhancement method based on generative adversarial network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 684-693.
[9] ZHANG Ya-dong, CHANG Chun-rui, ZHANG Zhi-ming, ZHANG Hao-qiang, SUN Hong-chan, AN Li-bao. Improvement on electrical contact characteristics of Au-doped carbon nanotubes by acid oxidation[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1624-1630.
[10] YU Ran-ran, LIU Lian-sheng, GE Ming-hui, ZHAO Jing-wei. Performance of solar thermoelectric power generation system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 769-774.
[11] CHEN Shu-qin, PAN Yang-yang, TAN Hong-wei. Comprehensive evaluation on regional suitability of solar water heating system in college bathrooms[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1519-1526.
[12] ZHOU Er zhen, YING Ji. Thermal and electrical conductivity of carbon nanotube arrays/epoxy[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1671-1676.
[13] WANG Yu fei, ZHANG Liang, WANG Tao, YU Zi tao, HU Ya cai. Effect of heat storage of graphite on flow boiling heat transfer characteristics in solar receiver[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2087-2093.
[14] RAO Lei, JI Chun lei. Triple junction solar cells characteristics under variable temperature and concentration at AM0[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2269-2275.
[15] MAO Jia ni, JIANG Shu fan, FANG Qi, LU Jin xin, LIU De yi, DU Jun yan. Heat transfer characteristics of novel heat collector on solar thermoelectric power generation[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2205-2213.