|
|
Performance of Janus solar interface evaporator based on carbon nanotube |
Hongyu GE1( ),Zhenhua FANG1,Junnan JIANG1,Jintao AN2,Xiaohua LIU1,*( ) |
1. Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China 2. Lanzhou Institute of Physics, Lanzhou 730000, China |
|
|
Abstract A method for fabricating Janus solar interfacial evaporators based on multi-walled carbon nanotube (MWCNTs) was proposed by combining MWCNTs, polydimethylsiloxane (PDMS) and polyvinyl alcohol (PVA) sponges. Only a spraying process was needed to obtain the Janus solar interfacial evaporator with a hydrophobic upper layer and a hydrophilic lower layer. Experimental investigations were conducted on the evaporator for water absorption, self-floatability, photo-thermal conversion efficiency, evaporation performance, and salt resistance. Results showed that the evaporite with carbon nanotubes mass concentration of 2.0 mg/mL had the best evaporation performance compared with other concentrations, and possessed good water-absorbing, self-floating and salt-resistant properties. The maximum evaporation rate reaches 1.79 kg/(m2·h), which is 3.9 times of the volumetric evaporation rate without evaporator under the solar radiation of 1 kW/m2. The evaporation interface not only has no salt crystals precipitated but also has the highest evaporation rate of 1.68 kg/(m2·h) after continuous evaporation for 10 h at the mass fraction of 3.5% of NaCl solution.
|
Received: 18 December 2023
Published: 11 February 2025
|
|
Fund: 大连市科技创新基金资助项目(2021JJ12GX024). |
Corresponding Authors:
Xiaohua LIU
E-mail: hongyu.ge@foxmail.com;lxh723@dlut.edu.cn
|
基于碳纳米管的Janus太阳能界面蒸发体性能
提出基于多壁碳纳米管的Janus结构太阳能界面蒸发体的制备方法,将多壁碳纳米管(MWCNTs)、聚二甲基硅氧烷(PDMS)和聚乙烯醇(PVA)海绵进行组合,只需要喷涂工艺,即可获得上层疏水、下层亲水的Janus结构太阳能界面蒸发体,针对该蒸发体开展吸水性、自漂浮性、光热转换性能、蒸发性能及抗盐性能的实验研究. 研究结果表明,与其他浓度相比,碳纳米管质量浓度为2.0 mg/mL的蒸发体的蒸发性能最佳,具备良好的吸水性能、自漂浮性能及抗盐性能. 在辐照度为1 kW/m2的光照条件下,最大蒸发速率达到1.79 kg/(m2·h),为无蒸发体的容积式蒸发速率的3.9倍. 当料液质量分数为3.5%时,连续蒸发10 h后的蒸发界面无盐晶体析出,蒸发速率最高为1.68 kg/(m2·h).
关键词:
太阳能,
界面蒸发,
光热转换,
碳纳米管,
蒸发速率
|
|
[1] |
郑宏飞. 太阳能海水淡化原理与技术 [M]. 北京: 化学工业出版社, 2012.
|
|
|
[2] |
OTANICAR T P, PHELAN P E, PRASHER R S, et al Nanofluid based direct absorption solar collector[J]. Journal of Renewable and Sustainable Energy, 2010, 2: 033102
doi: 10.1063/1.3429737
|
|
|
[3] |
PRASHER R, PHELAN P E, BHATTACHARYA P Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid)[J]. Nano Letters, 2006, 6 (7): 1529- 1534
doi: 10.1021/nl060992s
|
|
|
[4] |
GHADIMI A , SAIDUR R, METSELAAR H S C. A review of nanofluid stability properties and characterization in stationary conditions[J]. International Journal of Heat and Mass, 2011, 54 (17/18): 4051- 4068
|
|
|
[5] |
CHEN Y Y, QUAN X J, WANG Z Y, et al Stably dispersed high-temperature Fe3O4/silicone oil for direct solar thermal energy harvest[J]. Journal of Materials Chemistry A, 2016, 4 (44): 17503- 17511
doi: 10.1039/C6TA07773K
|
|
|
[6] |
YU Fa, CHEN Y Y, LIANG X B, et al Dispersion stability of thermal nanofluids[J]. Progress in Natural Science-Materials International, 2017, 27 (5): 531- 542
doi: 10.1016/j.pnsc.2017.08.010
|
|
|
[7] |
GHASEMI H, NI G, MARCONNET A M, et al Solar steam generation by heat localization[J]. Nature Communications, 2014, 5: 4449
doi: 10.1038/ncomms5449
|
|
|
[8] |
WANG Z H, LIU Y M, TAO P, et al Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface[J]. Small, 2014, 10 (16): 3234- 3239
doi: 10.1002/smll.201401071
|
|
|
[9] |
DAO V D, VU N H, YUN S, Recent advances and challenges for solar-driven water evaporation system toward applications [J]. Nano Energy , 2020, 68: 104324.
|
|
|
[10] |
ZHANG P P, LIAO Q H, YAO H Z, et al Direct solar steam generation system for clean water production[J]. Energy Storage Materials, 2019, 18: 429- 446
doi: 10.1016/j.ensm.2018.10.006
|
|
|
[11] |
YANG B, ZHANG Z M, LIU P T, et al Flatband λ-Ti3O5 towards extraordinary solar steam generation[J]. Nature, 2023, 622 (7983): 499- 506
doi: 10.1038/s41586-023-06509-3
|
|
|
[12] |
LI Y L, CUI X X, ZHAO M Y, et al Facile preparation of a robust porous photothermal membrane with antibacterial activity for efficient solar-driven interfacial water evaporation[J]. Journal of Materials Chemistry A, 2019, 7 (2): 704
doi: 10.1039/C8TA09223K
|
|
|
[13] |
LI L, ZANG L L, ZHANG S C, et al GO/CNT-silica Janus nanofibrous membrane for solar-driven interfacial steam generation and desalination[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111: 191- 197
doi: 10.1016/j.jtice.2020.03.015
|
|
|
[14] |
WANG Y L, LIU H, CHEN C J, et al All natural, high efficient groundwater extraction via solar steam/vapor generation[J]. Advanced Sustainable Systems, 2019, 3 (1): 1800055
doi: 10.1002/adsu.201800055
|
|
|
[15] |
JIANG Q S, TIAN L M, LIU K K, et al Bilayered biofoam for highly efficient solar steam generation[J]. Advanced Materials, 2016, 28 (42): 9400- 9407
doi: 10.1002/adma.201601819
|
|
|
[16] |
LI Y J, GAO T T, YANG Z, et al Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination[J]. Nano Energy, 2017, 41: 201- 209
doi: 10.1016/j.nanoen.2017.09.034
|
|
|
[17] |
MA S N, CHIU C P, ZHU Y J, et al Recycled waste black polyurethane sponges for solar vapor generation and distillation[J]. Applied energy, 2017, 206: 63- 69
doi: 10.1016/j.apenergy.2017.08.169
|
|
|
[18] |
WANG G, FU Y, GUO A K, et al Reduced graphene oxide-polyurethane nanocomposite foams as a reusable photo-receiver for efficient solar steam generation[J]. Chemistry of Materials, 2017, 29: 5629- 5935
doi: 10.1021/acs.chemmater.7b01280
|
|
|
[19] |
HU X Z, XU W C, ZHOU L, et al Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun[J]. Advanced Materials, 2017, 29 (5): 1604031
doi: 10.1002/adma.201604031
|
|
|
[20] |
GUO C L, MIAO E D, ZHAO J X, et al Paper-based integrated evaporation device for efficient solar steam generation through localized heating[J]. Solar Energy, 2019, 188: 1283- 1291
doi: 10.1016/j.solener.2019.07.023
|
|
|
[21] |
JIA C, LI T, CHEN C J, et al Scalable, anisotropic transparent paper directly from wood for light management in solar cells[J]. Nano Energy, 2017, 36: 366- 373
doi: 10.1016/j.nanoen.2017.04.059
|
|
|
[22] |
LI Q W, ZHAO X, LI L X, et al Facile preparation of polydimethylsiloxane/carbon nanotubes modified melamine solar evaporators for efficient steam generation and desalination[J]. Journal of Colloid and Interface Science, 2021, 584: 602- 609
doi: 10.1016/j.jcis.2020.10.002
|
|
|
[23] |
ZHAO X, ZHA X J, PU J H, et al Macroporous three-dimensional MXene architectures for highly efficient solar steam generation[J]. Journal of Materials Chemistry A, 2019, 7 (17): 10446
doi: 10.1039/C9TA00176J
|
|
|
[24] |
LI N, YIN D D, XU L L, et al High-quality ultralong copper sulphide nanowires for promising applications in high efficiency solar water evaporation[J]. Materials Chemistry Frontiers, 2019, 3 (3): 394- 398
doi: 10.1039/C8QM00549D
|
|
|
[25] |
李吉焱, 景艳菊, 邢郭宇, 等 耐盐型太阳能驱动界面光热材料及蒸发器的研究进展[J]. 化工进展, 2023, 42 (7): 3611- 3622 LI Jiyan, JING Yanju, XING Guoyu, et al Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator[J]. Chemical Industry and Engineering Progress, 2023, 42 (7): 3611- 3622
|
|
|
[26] |
ZHU B, KOU H, LIU Z X, et al Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater[J]. ACS Applied Materials and Interfaces, 2019, 11 (38): 35005- 35014
doi: 10.1021/acsami.9b12806
|
|
|
[27] |
HAN X N, ZANG L L, ZHANG S C, et al Hydrophilic polymer-stabilized porous composite membrane for water evaporation and solar desalination[J]. RSC Advances, 2020, 10 (5): 2507- 2512
doi: 10.1039/C9RA09667A
|
|
|
[28] |
YANG X D, YANG Y B, FU L N, et al An ultrathin flexible 2D membrane based on single-walled nanotube: MoS2 hybrid film for high-performance solar steam generation[J]. Advanced Functional Materials, 2018, 28 (3): 1704505
doi: 10.1002/adfm.201704505
|
|
|
[29] |
EL-D H T, ETTOUNEY H M. Fundamentals of salt water desalination [M]. Amsterdam: Elsevier, 2002.
|
|
|
[30] |
RAHBAR N, ESFAHANI J A Experimental study of a novel portable solar still by utilizing the heatpipe and thermoelectric module[J]. Desalination, 2012, 284: 55- 61
doi: 10.1016/j.desal.2011.08.036
|
|
|
[31] |
RAJASEENIVASAN T, NELSON R P, SRITHAR K An experimental investigation on a solar still with an integrated flat plate collector[J]. Desalination, 2014, 347: 131- 137
doi: 10.1016/j.desal.2014.05.029
|
|
|
[32] |
RAHBAR N, ESFAHANI J A, ASADI A An experimental investigation on productivity and performance of a new improved design portable asymmetrical solar still utilizing thermoelectric modules[J]. Energy Conversion and Management, 2016, 118: 55- 62
doi: 10.1016/j.enconman.2016.03.052
|
|
|
[33] |
KHATTAB N M, El SHENAWY E T Optimal operation of thermoelectric cooler driven by solar thermoelectric generator[J]. Energy Conversion and Management, 2006, 47 (4): 407- 426
doi: 10.1016/j.enconman.2005.04.011
|
|
|
[34] |
ZHANG L N, XU Z Y, ZHAO L, et al Passive, high-efficiency thermally-localized solar desalination[J]. Energy and Environmental Science, 2021, 14 (4): 1771- 1793
|
|
|
[35] |
KARAHAN M, EREN R Experimental investigation of the effect of fabric parameters on static water absorption in terry fabrics[J]. Fibres and Textiles in Eastern Europe, 2006, 14 (2): 59- 63
|
|
|
[36] |
PETRULYTE S, BALTAKYTE R Static water absorption in fabrics of different pile height[J]. Fibres and Textiles in East Europe, 2009, 17 (3): 60- 65
|
|
|
[37] |
CRUZ Ja, LEITÃO A, SILVEIRA D, et al Study of moisture absorption characteristics of cotton terry towel fabrics[J]. Procedia Engineering, 2017, 200: 289- 298
|
|
|
[38] |
ASHISH C K, SUJITH KUMAR C S, RAJ A K, et al. Experimental evaluation on the capillarity effect of different wicking structure incorporated in a patterned absorber facilitating solar interfacial evaporation [J]. Journal of Thermal Analysis and Calorimetry , 2022, 147(17): 9865–9886.
|
|
|
[39] |
王开珉, 张玉杰, 刘晓华, 等 液滴撞击加热亲水管壁后的反弹和中心射流[J]. 浙江大学学报: 工学版, 2022, 56 (6): 1191- 1198 WANG Kaimin, ZHANG Yujie, LIU Xiaohua, et al Droplet rebound and central jet after impacting hydrophilic tubular surface[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (6): 1191- 1198
|
|
|
[40] |
WANG K M, CHEN H, GE H Y, et al Study of impact velocity and curvature ratio on the dynamic characteristics of double droplets impacting super-hydrophobic tubes[J]. Physics of Fluids, 2021, 33 (1): 013301
doi: 10.1063/5.0035624
|
|
|
[41] |
WANG K M, LIU J W, YANG X W, et al Experimental study on the droplet dynamics after impacting an inclined superhydrophobic surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 675: 132016
doi: 10.1016/j.colsurfa.2023.132016
|
|
|
[42] |
WANG K M, YANG X W, LIU J W, et al Directional control of the size and velocity of micro-droplets ejected after impacting a super-hydrophobic surface[J]. Experimental Thermal and Fluid Science, 2023, 149: 111012
doi: 10.1016/j.expthermflusci.2023.111012
|
|
|
[43] |
ZHANG Q, LI L, JIANG B, et al Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination[J]. ACS Applied Materials and Interfaces, 2020, 12 (25): 28179- 28187
doi: 10.1021/acsami.0c05806
|
|
|
[44] |
YOU D Y, YANG W T, ZHAO Y J, et al Salt-tolerant and low-cost flame-treated aerogel for continuously efficient solar steam generation[J]. Solar Energy, 2021, 227: 303- 311
doi: 10.1016/j.solener.2021.09.024
|
|
|
[45] |
LIU G H, XU J L, WANG K Y Solar water evaporation by black photothermal sheets[J]. Nano Energy, 2017, 41: 269- 284
doi: 10.1016/j.nanoen.2017.09.005
|
|
|
[46] |
LIND M A, PETTIT R B, MASTERSON K D The sensitivity of solar transmittance, reflectance and absorptance to selected averaging procedures and solar irradiance distributions[J]. Journal of Solar Energy Engineering, 1980, 102 (1): 34- 40
doi: 10.1115/1.3266119
|
|
|
[47] |
DENG Z Y, MIAO L, LIU P F, et al Extremely high water-production created by a nanoink-stained PVA evaporator with embossment structure[J]. Nano Energy, 2019, 55: 368- 376
doi: 10.1016/j.nanoen.2018.11.002
|
|
|
[48] |
ASTM. Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface: ASTM G173-03(2020) [S]. Pennsylvania: ASTM, 2020.
|
|
|
[49] |
JIN Y, CHANG J, SHI Y, et al A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation[J]. Journal of Materials Chemistry A, 2018, 6 (17): 7942- 7949
doi: 10.1039/C8TA00187A
|
|
|
[50] |
ZHANG Y X, XIONG T, SURESH L, et al Guaranteeing complete salt rejection by channeling saline water through fluidic photothermal structure toward synergistic zero energy clean water production and in situ energy generation[J]. ACS Energy Letters, 2020, 5 (11): 3397- 3404
doi: 10.1021/acsenergylett.0c01797
|
|
|
[51] |
MITSUHIKO M, ASUKA F, TAKAYUKI E, et al Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages[J]. Science, 2024, 304 (5674): 1134- 1137
|
|
|
[52] |
KUSHI K, JUNICHI I, GIKA S, et al Structural changes of water in poly(vinyl alcohol) hydrogel during dehydration[J]. Journal of Chemical Physics, 2014, 140 (4): 044909
doi: 10.1063/1.4862996
|
|
|
[53] |
张敬敬. 基于太阳能界面光热效应的脱盐净水研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. ZHANG Jingjing. Study on desalination and water purification based on interfacial photothermal effect of solar energy [D]. Harbin: Harbin Institute of Technology, 2022.
|
|
|
[54] |
WANG Z X, HORSEMAN T, STRAUB A P, et al Pathways and challenges for efficient solar-thermal desalination[J]. Science Advances, 2019, 5 (7): eaax0763
doi: 10.1126/sciadv.aax0763
|
|
|
[55] |
李桐, 邱国玉 基于稳定氢氧同位素的盐水与纯水蒸发差异分析[J]. 热带地理, 2018, 38 (6): 857- 865 LI Tong, QIU Guoyu Hydrogen and oxygen stable isotope study on the difference of evaporation between salt and pure water[J]. Tropical Geography, 2018, 38 (6): 857- 865
|
|
|
[56] |
李阳, 贾瑞亮, 周金龙, 等 干旱地区高盐度水面蒸发试验研究[J]. 水文, 2016, 36 (6): 24- 27 LI Yang, JIA Ruiliang, ZHOU Jinlong, et al Experimental study on high salinity water surface evaporation in arid areas[J]. Journal of China Hydrology, 2016, 36 (6): 24- 27
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|