|
|
Numerical simulation of interfacial evaporation system performance with plate substrate structure |
Sitong LI( ),Hongyu GE,Peisen KANG,Lin MU,Xiaohua LIU*( ) |
School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract A three-dimensional mathematical model was established for a solar interfacial evaporation system with a plate substrate structure, and the evaporation process of the system was solved using Ansys Fluent software. The effects of the slit width and mass fraction of feed water on the interfacial evaporation process were investigated. Results show that the evaporation rate decreases with the increase of slit width and mass fraction of feed water. The evaporation interface dries up, and the evaporation rate decreases significantly when the substrate water delivery is less than the evaporation demand. When the slit width is 0.5 mm, the mass fraction of feed water corresponds to the maximum evaporation rate is 3.5% to 5.0%. When the mass fraction of feed water is 3.5%, the slit width corresponds to the maximum evaporation rate is 0.5 mm to 0.6 mm. The pattern of change in the energy utilization of the system is basically the same as the evaporation rate. The matching of evaporation rate and feed water supply during the evaporation process is one of the important factors affecting the performance of solar interfacial evaporation systems with plate substrate structure.
|
Received: 30 June 2023
Published: 01 July 2024
|
|
Fund: 大连市科技创新基金资助项目(2021JJ12GX024); 辽宁省中央引导地方科技发展专项(2021JH6/10500150). |
Corresponding Authors:
Xiaohua LIU
E-mail: lisitong0522@163.com;lxh723@dlut.edu.cn
|
具有板式基底结构的界面蒸发系统性能模拟
针对具有板式基底结构的太阳能界面蒸发系统建立三维数学模型,利用Ansys Fluent软件求解该系统的蒸发过程,研究板缝宽度及料液质量分数对界面蒸发过程的影响. 结果表明:蒸发速率随板缝宽度和料液质量分数的增大而减小;当基底输水量小于蒸发需求时,蒸发界面出现干涸现象,干涸现象出现后蒸发速率显著降低;当板缝宽度为0.5 mm时,与最大蒸发速率对应的料液质量分数为3.5%~5.0%;当料液质量分数为3.5%时,与最大蒸发速率对应的板缝宽度为0.5~0.6 mm;系统能量利用率变化规律与蒸发速率基本一致. 蒸发过程中蒸发量与料液供给量的匹配是影响板式基底结构的太阳能界面蒸发系统性能的重要因素.
关键词:
基底结构,
界面蒸发,
板缝宽度,
料液质量分数,
蒸发速率
|
|
[1] |
付清腾, 郭飞, 刘晓华 采用加湿除湿技术处理浓盐水的实验研究[J]. 浙江大学学报: 工学版, 2019, 53 (11): 2231- 2237 FU Qingteng, GUO Fei, LIU Xiaohua Experimental study of high salinity water treatment by humidification-dehumidification technology[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (11): 2231- 2237
|
|
|
[2] |
VIKASH K C, SHAILENDRA K S, JEEVAN V T, et al A comprehensive review of direct solar desalination techniques and its advancements[J]. Journal of Cleaner Production, 2021, 284: 124719
doi: 10.1016/j.jclepro.2020.124719
|
|
|
[3] |
ZHANG Y, XIONG T, NANDAKUMAR D K, et al. Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation [J]. Advance Science . 2020, 7: 1903478.
|
|
|
[4] |
HE J, ZHAO G, MU P, et al Scalable fabrication of monolithic porous foam based on cross-linked aromatic polymers for efficient solar steam generation[J]. Solar Energy Materials and Solar Cells, 2019, 201: 110111
doi: 10.1016/j.solmat.2019.110111
|
|
|
[5] |
LI X, XU W, TANG M, et al Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences, 2016, 113 (49): 13953- 13958
doi: 10.1073/pnas.1613031113
|
|
|
[6] |
XU N, HU X, XU W, et al Mushrooms as efficient solar steam-generation devices[J]. Advanced Materials, 2017, 29 (28): 1606762
doi: 10.1002/adma.201606762
|
|
|
[7] |
徐凝. 界面光-蒸汽转化: 仿生设计和综合利用[D]. 南京: 南京大学, 2019. XU Ning. Interfacial heating based solar-vapor generation: bio-inspired designs and comprehensive applications [D]. Nanjing: Nanjing University, 2019.
|
|
|
[8] |
LIU H, ZHANG X, HONG Z, et al A bioinspired capillary-driven pump for solar vapor generation[J]. Nano Energy, 2017, 42: 115- 121
doi: 10.1016/j.nanoen.2017.10.039
|
|
|
[9] |
LIU Z, YANG Z, HUANG X, et al High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination via enhanced localized heating[J]. Journal of Materials Chemistry A, 2017, 5 (37): 20044- 20052
doi: 10.1039/C7TA06384A
|
|
|
[10] |
GUO A, MING X, FU Y, et al Fiber-based, double-sided, reduced graphene oxide films for efficient solar vapor generation[J]. ACS Applied Materials and Interfaces, 2017, 9 (35): 29958- 29964
doi: 10.1021/acsami.7b07759
|
|
|
[11] |
徐馨宇, 胡楠, 范利武 土壤原位热传导修复水-汽-热耦合输运模拟[J]. 浙江大学学报: 工学版, 2022, 56 (1): 144- 151 XU Xinyu, HU Nan, FAN Liwu Coupled water-vapor-heat transport simulation on in-situ thermal conduction heating remediation of soil[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (1): 144- 151
|
|
|
[12] |
LI Y, ALIBAKHSHI M A, ZHAO Y, et al Exploring ultimate water capillary evaporation in nanoscale conduits[J]. Nano Letters, 2017, 17 (8): 4813- 4819
doi: 10.1021/acs.nanolett.7b01620
|
|
|
[13] |
RAMON G, ORON A Capillary rise of a meniscus with phase change[J]. Journal of Colloid and Interface Science, 2008, 327 (1): 145- 151
doi: 10.1016/j.jcis.2008.08.016
|
|
|
[14] |
LIU M, WU J, GAN Y, et al Tuning capillary penetration in porous media: combining geometrical and evaporation effects[J]. International Journal of Heat and Mass Transfer, 2018, 123: 239- 250
doi: 10.1016/j.ijheatmasstransfer.2018.02.101
|
|
|
[15] |
SHARQAWY M H, LIENHARD V J H, ZUBAIR S M Thermophysical properties of seawater: a review of existing correlations and data[J]. Desalination and Water Treatment, 2012, 16 (1–3): 354- 380
|
|
|
[16] |
PERSAD A H, WARD C A Expressions for the evaporation and condensation coefficients in the Hertz-Knudsen relation[J]. Chemical Reviews, 2016, 116 (14): 7727- 7767
doi: 10.1021/acs.chemrev.5b00511
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|