|
|
Structure and property of 2219 aluminum alloy fabricated by droplet+arc additive manufacturing |
Yongchao WANG( ),Zhengying WEI*( ),Pengfei HE |
State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710000, China |
|
|
Abstract A new arc additive manufacturing process—droplet+arc additive manufacturing (DAAM) technology was applied to manufacture aluminum alloy samples in order to improve the quality and the efficiency of aluminum alloy. A new droplet generation system (DGS) was applied instead of the conventional wire feeding system, which makes the material addition and arc energy independent of each other. The formed material is 2219 aluminum alloy, and a trace amount of Mg element was added through the DGS. A thin-walled structure was deposited using the DAAM system at a significantly higher deposition rate (160 $ {\mathrm{m}\mathrm{m}}^{3}/\mathrm{s} $) than conventional wire and arc additive manufacturing techniques. The microstructure of the cross section of the thin-walled structure was observed and analyzed. Results showed that the grain morphology of the thin-walled structure was dominated by columnar crystals and exhibited a periodic distribution of inner-layer columnar crystals and inter-layer equiaxed crystals. The average tensile strengths in the horizontal and vertical directions were 455.4 MPa and 417.0 MPa after T6 heat treatment, while the yield strengths were 342.2 MPa and 316.4 MPa, respectively. The comparison results with the previous studies show that the addition of Mg element increases the yield strength of 2219 aluminum alloy, but leads to a corresponding decrease in elongation.
|
Received: 24 October 2023
Published: 23 July 2024
|
|
Fund: 国家自然科学基金资助项目(52275376). |
Corresponding Authors:
Zhengying WEI
E-mail: wyc0228@stu.xjtu.edu.cn;zywei@mail.xjtu.edu.cn
|
熔滴复合电弧增材制造2219铝合金组织与性能
为了提高铝合金电弧增材制造的质量和效率,采用新型的电弧增材制造工艺——熔滴复合电弧增材制造(DAAM)技术来制造铝合金样品. 采用全新的熔滴生成系统(DGS)代替传统的送丝系统,使得材料的添加与电弧能量相互独立. 成形的材料为2219铝合金,通过熔滴系统添加了微量Mg元素. 利用熔滴复合电弧增材制造设备沉积了薄壁结构,沉积速率较传统电弧增材制造技术大幅提升(约为160 mm3/s). 观察和分析薄壁结构截面的微观组织表明,薄壁结构的晶粒形态以柱状晶为主,呈现层内柱状晶和层间等轴晶的周期性分布规律. 经过T6热处理后,试样水平和垂直方向的平均抗拉强度分别为455.4和417.0 MPa,屈服强度分别为342.4和316.4 MPa. 较之前的研究结果对比表明,Mg元素的添加提升了2219铝合金的屈服强度,但导致延伸率降低.
关键词:
2219铝合金,
电弧增材制造,
熔滴,
微观组织,
力学性能
|
|
[1] |
JIN P, REN H S, LIU Y B, et al Microstructural evolution and mechanical properties of 2219 aluminum alloy deposited by wire and arc additive manufacturing[J]. Advanced Engineering Materials, 2022, 24 (9): 1- 13
|
|
|
[2] |
孙佳孝, 杨可, 王秋雨, 等 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57 (5): 665- 674 SUN Jiaxiao, YANG Ke, WANG Qiuyu, et al Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing[J]. Acta Metallurgica Sinica, 2021, 57 (5): 665- 674
|
|
|
[3] |
吴江东, 刘德华, 张子傲, 等 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59 (6): 767- 776 WU Jiangdong, LIU Dehua, ZHANG Ziao, et al Microstructure and mechanical properties of 2024 aluminum alloy prepared by wire arc additive manufacturing[J]. Acta Metallurgica Sinica, 2023, 59 (6): 767- 776
|
|
|
[4] |
BAI J Y, YANG C L, LIN S B, et al Mechanical properties of 2219-Al components produced by additive manufacturing with TIG[J]. International Journal of Advanced Manufacturing Technology, 2015, 86 (1-4): 479- 485
|
|
|
[5] |
OLIVEIRA J P, LALONDE A D, MA J Processing parameters in laser powder bed fusion metal additive manufacturing[J]. Materials and Design, 2020, 193: 108762
|
|
|
[6] |
TOMAR B, SHIVA S, NATH T A review on wire arc additive manufacturing: processing parameters, defects, quality improvement and recent advances[J]. Materials Today Communications, 2022, 31: 103739
|
|
|
[7] |
BRICE C, SHENOY R, KRAL M, et al Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing[J]. Materials Science and Engineering, 2015, 648: 9- 14
doi: 10.1016/j.msea.2015.08.088
|
|
|
[8] |
李权, 王国庆, 罗志伟, 等 2219铝合金电弧增材制造组织及力学性能的非均匀性[J]. 稀有金属材料与工程, 2020, 48 (11): 3969- 3976 LI Quan, WANG Guoqing, LUO Zhiwei, et al Inhomogeneity of microstructures and mechanical properties of 2219 aluminum alloy by WAAM[J]. Rare Metal Materials and Engineering, 2020, 48 (11): 3969- 3976
|
|
|
[9] |
LIU G C, XIONG J, TANG L Microstructure and mechanical properties of 2219 aluminum alloy fabricated by double-electrode gas metal arc additive manufacturing[J]. Additive Manufacturing, 2020, 35: 101375
|
|
|
[10] |
ZHOU Y H, LIN X, KANG N, et al Influence of travel speed on microstructure and mechanical properties of wire+arc additively manufactured 2219 aluminum alloy[J]. Journal of Materials Science and Technology, 2020, 37: 143- 153
doi: 10.1016/j.jmst.2019.06.016
|
|
|
[11] |
REN L, WANG Z, WANG S, et al The effect of Cu content on the microstructure and properties of the wire arc additive manufacturing Al-Cu Alloy[J]. Materials (Basel), 2023, 16 (7): 2694- 2705
doi: 10.3390/ma16072694
|
|
|
[12] |
ZHOU Y H, LIN X, KANG N, et al The heterogeneous band microstructure and mechanical performance in a wire+arc additively manufactured 2219 Al alloy[J]. Additive Manufacturing, 2022, 49: 102486
|
|
|
[13] |
禹润缜, 赵峰, 余圣甫, 等 电弧熔丝增材制造ER2319铝堆积金属的组织性能及T6热处理工艺优化[J]. 金属热处理, 2021, 46 (4): 49- 59 YU Runzhen, ZHAO Feng, YU Shengfu, et al Microstructure, properties and T6 heat treatment process optimization for wire arc additive manufacturing ER2319 aluminum deposited metals[J]. Heat Treatment of Metals, 2021, 46 (4): 49- 59
|
|
|
[14] |
MCLEAN N, BERMINGHAM M J, COLEGROVE P, et al Effect of hot isostatic pressing and heat treatments on porosity of wire arc additive manufactured Al 2319[J]. Journal of Materials Processing Technology, 2022, 310: 117769
|
|
|
[15] |
HUANG L, CHEN X Z, KONOVALOV S, et al A review of challenges for wire and arc additive manufacturing (WAAM)[J]. Transactions of the Indian Institute of Metals, 2023, 76 (5): 1123- 1139
doi: 10.1007/s12666-022-02823-y
|
|
|
[16] |
余圣甫, 禹润缜, 何天英, 等 电弧增材制造技术及其应用的研究进展[J]. 中国材料进展, 2021, 40 (3): 198- 209 YU Shengfu, YU Runzhen, HE Tianying, et al Wire arc additive manufacturing and its application: research progress[J]. Materials China, 2021, 40 (3): 198- 209
doi: 10.7502/j.issn.1674-3962.202011006
|
|
|
[17] |
CONG B Q, QI Z W, QI B J, et al A comparative study of additively manufactured thin wall and block Structure with Al-6.3%Cu alloy using cold metal transfer process[J]. Applied Sciences, 2017, 7 (3): 275- 286
doi: 10.3390/app7030275
|
|
|
[18] |
DONG M Y, ZHAO Y, LI Q, et al Effects of Cd addition in welding wires on microstructure and mechanical property of wire and arc additively manufactured Al−Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2022, 32 (3): 750- 764
doi: 10.1016/S1003-6326(22)65830-8
|
|
|
[19] |
HE P F, WEI Z Y, WANG Y C, et al A novel droplet+arc additive manufacturing for aluminum alloy: method, microstructure and mechanical properties[J]. Additive Manufacturing, 2023, 61: 103356
doi: 10.1016/j.addma.2022.103356
|
|
|
[20] |
WANG Z N, XIN L, WANG L L, et al Novel high-strength Al-Cu-Cd alloy fabricated by arc-directed energy deposition: precipitation behavior of the Cd phase and grain evolution[J]. Additive Manufacturing, 2022, 60: 103278
|
|
|
[21] |
WANG Z H, GAO Y F, HUANG J L, et al Precipitation phenomena and strengthening mechanism of Al–Cu alloys deposited by in-situ rolled wire-arc additive manufacturing[J]. Materials Science and Engineering, 2022, 855: 143770
|
|
|
[22] |
LI Z Q, REN W R, CHEN H W, et al θ′′′ precipitate phase, GP zone clusters and their origin in Al-Cu alloys[J]. Journal of Alloys and Compounds, 2023, 930: 167396
|
|
|
[23] |
KIM I S , SONG M Y, KIM J H, et al Effect of added Mg on the clustering and two-step aging behavior of Al–Cu alloys[J]. Materials Science and Engineering: A, 2020, 798: 140123
|
|
|
[24] |
ZHOU Y H, LIN X, KANG N, et al Mechanical properties and precipitation behavior of the heat-treated wire+arc additively manufactured 2219 aluminum alloy[J]. Materials Characterization, 2021, 171: 110735
|
|
|
[25] |
GU J L, DING J L, WILLIAMS S W, et al The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al–6.3Cu alloy[J]. Materials Science and Engineering, 2016, 615 (10): 18- 26
doi: 10.1016/j.msea.2015.10.101
|
|
|
[26] |
BAI J Y, FAN C L, LIN S B, et al Mechanical properties and fracture behaviors of GTA-additive manufactured 2219-Al after an especial heat treatment[J]. Journal of Materials Engineering and Performance, 2017, 26 (4): 1808- 1816
doi: 10.1007/s11665-017-2627-5
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|