Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (1): 32-46    DOI: 10.3785/j.issn.1008-973X.2023.01.004
    
Design knowledge recommendation based on inference-context-aware activation model
Chen YE1(),Hong-fei ZHAN1,*(),Ying-jun LIN2,Jun-he YU1,Rui WANG1,Wu-chang ZHONG1
1. Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
2. Zhongyin (Ningbo) Battery Limited Company, Ningbo 315040, China
Download: HTML     PDF(2926KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A personalized design knowledge recommendation service architecture was proposed aiming at the problems of low efficiency of knowledge resource retrieval and utilization and imbalance of effectiveness and accuracy of knowledge recommendation results under the task of personalized product design. The framework combined the product design scene characteristics to determine the design knowledge categories based on the product design literature data and manual data. A new deep learning model ALBERT-BiLSTM-IDCNN-CRF was adopted to effectively extract 9 types of knowledge elements contained in the data, including design objects, design tasks, design performance, design methods, design tools, design principles, design parameters, calculation formulas and design drawings. A five-dimensional design knowledge association model was established by combining the knowledge elements of designers composed of internal employees and literature authors. A complete product design knowledge base was established by using ontology and inference rules based on the model. A design knowledge recommendation service mode based on inference-context-aware activation model was proposed. The hydraulic press design was taken as an example to verify. Results show that the proposed deep learning model achieves better results than other benchmark models in design knowledge extraction. The proposed knowledge recommendation service mode greatly improves the effectiveness of outputting recommendation results while maintaining a high accuracy of the knowledge recommendation results. Required solution knowledge resources can be quickly and accurately recommended for personalized design tasks under specific object attributes, task attributes and performance requirement attributes.



Key wordsproduct design      personalized design task solving      deep learning      inference-context-aware activation model      knowledge recommendation     
Received: 14 May 2022      Published: 17 January 2023
CLC:  TH 186  
  TP 391  
Fund:  国家重点研发计划资助项目(2019YFB1707101, 2019YFB1707103);国家自然科学基金资助项目(71671097);浙江省公益技术应用研究计划资助项目(LGG20E050010, LGG18E050002);宁波市自然科学基金资助项目(2018A610131);健康智慧厨房浙江省工程研究中心资助项目
Corresponding Authors: Hong-fei ZHAN     E-mail: 15295500807@163.com;zhanhongfei@nbu.edu.cn
Cite this article:

Chen YE,Hong-fei ZHAN,Ying-jun LIN,Jun-he YU,Rui WANG,Wu-chang ZHONG. Design knowledge recommendation based on inference-context-aware activation model. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 32-46.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.01.004     OR     https://www.zjujournals.com/eng/Y2023/V57/I1/32


基于推理-情境感知激活模型的设计知识推荐

针对个性化产品设计任务下的知识资源检索和利用效率低、知识推荐结果有效性和准确性侧重失衡的问题,提出个性化设计知识推荐服务架构. 该架构以产品设计文献数据、手册数据为核心,结合产品设计场景特征,确定设计知识类别. 采用新的深度学习模型ALBERT-BiLSTM-IDCNN-CRF,对数据中蕴含的设计对象、设计任务、设计性能、设计方法、设计工具、设计原理、设计参数、计算公式、设计图这9类知识元进行有效抽取. 结合由企业内部员工和文献作者组成的设计人员知识元,建立五维设计知识关联模型,以该模型为基础,运用本体和推理规则建立完善的产品设计知识库. 提出基于推理-情境感知激活模型的设计知识推荐服务模式. 以液压机设计为例进行验证. 结果表明,所提的深度学习模型在设计知识抽取中获得了优于其他基准模型的效果. 所提的知识推荐服务模式在维持较高的知识推荐结果准确性的同时,提升了输出推荐结果的有效性,可以快速、准确地为特定对象属性、任务属性和性能要求属性下的个性化设计任务求解推荐所需的知识资源.


关键词: 产品设计,  个性化设计任务求解,  深度学习,  推理-情境感知激活模型,  知识推荐 
Fig.1 Architecture of personalized design knowledge recommendation service
Fig.2 Knowledge element extraction model based on big data and product design scenario analysis
Fig.3 Five-dimensional mapping knowledge model
Fig.4 Second stage of designing knowledge recommendation service process based on context-aware activation model
Fig.5 Flow of improved knowledge similarity calculation algorithm
词性 权重
名词 0.75
动词 0.65
形容词 0.40
其他 0.10
Tab.1 Summary table of part-of-speech weights
模型 人民日报数据集 液压机设计数据集
P R F1 P R F1
ALBERT 0.872 4 0.834 6 0.818 2 0.730 1 0.476 8 0.536 3
ALBERT-BiLSTM 0.931 2 0.908 4 0.919 6 0.909 3 0.555 0 0.667 9
ALBERT-CRF 0.831 5 0.697 4 0.758 0 0.434 4 0.417 3 0.423 0
ALBERT-BiLSTM-CRF 0.964 4 0.919 9 0.941 6 0.841 7 0.618 0 0.681 9
ALBERT-BiLSTM-IDCNN-CRF 0.973 4 0.925 6 0.945 8 0.915 3 0.627 1 0.718 7
Tab.2 Simulation results of different models under two text corpora
Fig.6 Identification of F1 of various knowledge elements under different model methods
模型方法 t/ms
ALBERT 61.207
ALBERT-BiLSTM 63.145
ALBERT-CRF 64.685
ALBERT-BiLSTM-CRF 65.022
ALBERT-BiLSTM-IDCNN-CRF 64.893
Tab.3 Average time spent on extracting single knowledge element
Fig.7 Original hydraulic press design knowledge base
Fig.8 Tacit design knowledge discovery based on inference rules
Fig.9 Partial example diagram of implementation of first-stage hydraulic press design knowledge recommendation service function
类型 MI 排序
设计原理 0.019 5 6
设计参数 0.021 3 5
计算公式 0.014 8 7
设计图 0.039 0 2
设计方法 0.032 5 3
设计工具 0.030 8 4
设计人员 0.063 3 1
Tab.4 Prioritization of knowledge recommendations
任务书的下标索引 TF-IDF+余弦相似度方法 改进的知识相似度计算方法
相似度 输出结果 相似度 输出结果
0 0.794 0.838
1 0.331 × 0.304 ×
2 0.089 × 0.012 ×
3 0.608 0.585 ×
4 0.620 0.636
5 0.152 × 0.016 ×
6 0.506 × 0.486 ×
7 0.302 × 0.310 ×
8 0.076 × 0.031 ×
9 0.213 × 0.189 ×
10 0.144 × 0.103 ×
Tab.5 Similarity calculation between current design task book and other task books in task book library
Fig.10 Semantic similarity calculation between task keywords
Fig.11 Activation and expansion of hydraulic press design knowledge node
Fig.12 Second stage hydraulic press design knowledge recommendation service function
方法 Qs Ps 优先度和相似度排序性能 Ts
推理机 20% 100%
知识激活模型 70% 50%
情境感知激活模型 70% 60% 较长
推理-情境感知激活模型 70% 80% 较短
Tab.6 Recommendation performance of different methods
[1]   QIAO B, ZOU Z, HUANG Y, et al A joint model for entity and relation extraction based on BERT[J]. Neural Computing and Applications, 2022, 34 (1-3): 3471- 3481
[2]   余丽, 钱力, 付常雷, 等 基于深度学习的文本中细粒度知识元抽取方法研究[J]. 数据分析与知识发现, 2019, 3 (1): 38- 45
YU Li, QIAN Li, FU Chang-lei, et al Extracting fine-grained knowledge units from texts with deep learning[J]. Data Analysis and Knowledge Discovery, 2019, 3 (1): 38- 45
[3]   LIU J, XIA C, YAN H, et al Innovative deep neural network modeling for fine-grained Chinese entity recognition[J]. Electronics, 2020, 9 (6): 1001- 1015
doi: 10.3390/electronics9061001
[4]   QIN Y, SHEN G W, ZHAO W B, et al A network security entity recognition method based on feature template and CNN-BiLSTM-CRF[J]. Frontiers of Information Technology and Electronic Engineering, 2019, 20 (6): 872- 884
doi: 10.1631/FITEE.1800520
[5]   王志梅, 杨帆 基于相似学习者发现的资源推荐系统[J]. 浙江大学学报: 工学版, 2006, (10): 1688- 1691
WANG Zhi-mei, YANG Fan Resource recommendation system based on similar learners exploitation[J]. Journal of Zhejiang University: Engineering Science, 2006, (10): 1688- 1691
[6]   密阮建驰, 战洪飞, 余军合 面向企业知识推荐的知识情景建模方法研究[J]. 情报理论与实践, 2016, 39 (4): 78- 83
MI RUAN Jian-chi, ZHAN Hong-fei, YU Jun-he Research on knowledge scenario modeling method for enterprise knowledge recommendation[J]. Information Studies: Theory and Application, 2016, 39 (4): 78- 83
doi: 10.16353/j.cnki.1000-7490.2016.04.014
[7]   WANG H, FU W Personalized learning resource recommendation method based on dynamic collaborative filtering[J]. Mobile Networks and Applications, 2021, 26 (2): 473- 487
[8]   LI M, YUAN M Y, XU Y C An approach to task-oriented knowledge recommendation based on multi-granularity fuzzy linguistic method[J]. Kybernetes, 2015, 44 (3): 460- 474
doi: 10.1108/K-10-2014-0207
[9]   WEI Y L Development of an integrated-collaborative decision making framework for product top-down design process[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25 (3): 497- 512
doi: 10.1016/j.rcim.2008.01.005
[10]   贺雪梅, 邵骁裕, 王海锋 基于场景思维的家具产品设计策略研究[J]. 林产工业, 2020, 57 (12): 65- 69
HE Xue-mei, SHAO Xiao-yu, WANG Hai-feng Research about furniture product design strategies based on scene thinking[J]. China Forest Products Industry, 2020, 57 (12): 65- 69
doi: 10.19531/j.issn1001-5299.202012013
[11]   YANG J, ZHANG Y, LI L, et al. YEDDA: a lightweight collaborative text span annotation tool [C]// Proceedings of ACL 2018, System Demonstrations. Melbourne: ACL, 2018.
[12]   LAN Z, CHEN M, GOODMAN S, et al. Albert: a lite bert for self-supervised learning of language representations [C]// Proceedings of ICLR 2020, Computer Science. Los Alamos: ICLR, 2019.
[13]   YANG L, FU Y F, DAI Y BIBC: a Chinese named entity recognition model for diabetes research[J]. Applied Sciences, 2021, 20 (11): 1- 14
[14]   代风, 翟翔, 施国强, 等 面向航天产品研制的知识网络本体建模方法[J]. 浙江大学学报: 工学版, 2018, 52 (10): 2023- 2034
DAI Feng, ZHAI Xiang, SHI Guo-qiang, et al Modeling ontological knowledge network for aerospace equipment development[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (10): 2023- 2034
[15]   李泚泚, 田国会, 张梦洋, 等 基于本体的物品属性类人认知及推理[J]. 浙江大学学报: 工学版, 2018, 52 (7): 1231- 1238
LI Ci-ci, TIAN Guo-hui, ZHANG Meng-yang, et al Ontology-based humanoid cognition and reasoning of object attributes[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (7): 1231- 1238
[16]   梁野, 张树有, 刘晓健, 等 基于变权分层激活模型的产品设计知识动态推送技术[J]. 计算机集成制造系统, 2015, 21 (12): 3107- 3118
LIANG Ye, ZHANG Shu-you, LIU Xiao-jian, et al Product design knowledge dynamic push technology based on variable-weight layered spreading activation model[J]. Computer Integrated Manufacturing Systems, 2015, 21 (12): 3107- 3118
[17]   KIM J, YUN U, PYUN G, et al A blog ranking algorithm using analysis of both blog influence and characteristics of blog posts[J]. Cluster Computing-The Journal of Networks Software Tools and Applications, 2015, 18 (3): 157- 164
[18]   CHHIM P, CHINNAM R B, SADAWI N Product design and manufacturing process based ontology for manufacturing knowledge reuse[J]. Journal of Intelligent Manufacturing, 2019, 30 (2): 905- 916
doi: 10.1007/s10845-016-1290-2
[19]   YE J Cosine similarity measures for intuitionistic fuzzy sets and their applications[J]. Mathematical and Computer Modelling, 2011, 53 (1/2): 91- 97
[20]   PETROV S, DAS D, MCDONALD R A universal part-of-speech tagset[J]. Computer Science, 2011, 1 (3): 2089- 2096
[21]   MANNING C D, RAGHAVAN P. Introduction to information retrieval [M]. Cambridge: Cambridge University Press, 2010: 79-113.
[22]   王临科, 蒋祖华, 李心雨 基于情境感知生成对抗网络模型的工程知识推荐方法[J]. 计算机集成制造系统, 2022, 28 (3): 798- 811
WANG Lin-ke, JIANG Zu-hua, LI Xin-yu Context-aware GAN-based knowledge recommendation method in engineering field[J]. Computer Integrated Manufacturing Systems, 2022, 28 (3): 798- 811
[1] Jin-zhen LIU,Fei CHEN,Hui XIONG. Open electrical impedance imaging algorithm based on multi-scale residual network model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1789-1795.
[2] Wan-liang WANG,Tie-jun WANG,Jia-cheng CHEN,Wen-bo YOU. Medical image segmentation method combining multi-scale and multi-head attention[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1796-1805.
[3] Kun HAO,Kuo WANG,Bei-bei WANG. Lightweight underwater biological detection algorithm based on improved Mobilenet-YOLOv3[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1622-1632.
[4] Yong-sheng ZHAO,Rui-xiang LI,Na-na NIU,Zhi-yong ZHAO. Shape control method of fuselage driven by digital twin[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1457-1463.
[5] Li HE,Shan-min PANG. Face reconstruction from voice based on age-supervised learning and face prior information[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1006-1016.
[6] Xue-qin ZHANG,Tian-ren LI. Breast cancer pathological image classification based on Cycle-GAN and improved DPN network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 727-735.
[7] Li LIN,Li REN,Ming-qing YANG. Prediction of black-box personality image of cluster users based on improved weighted collaborative filtering[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 803-808.
[8] Jing-hui CHU,Li-dong SHI,Pei-guang JING,Wei LV. Context-aware knowledge distillation network for object detection[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 503-509.
[9] Ruo-ran CHENG,Xiao-li ZHAO,Hao-jun ZHOU,Han-chen YE. Review of Chinese font style transfer research based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 510-519, 530.
[10] Tian-le YUAN,Ju-long YUAN,Yong-jian ZHU,Han-chen ZHENG. Surface defect detection algorithm of thrust ball bearing based on improved YOLOv5[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2349-2357.
[11] Fan ZHONG,Zheng-yao BAI. 3D point cloud super-resolution with dynamic residual graph convolutional networks[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2251-2259.
[12] Xiang-dong PENG,Cong-cheng PAN,Ze-jun KE,Hua-qiang ZHU,Xiao ZHOU. Classification method for electrocardiograph signals based on parallel architecture model and spatial-temporal attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1912-1923.
[13] Dong-jie YANG,Xian-jun GAO,Shu-hao RAN,Guang-bin ZHANG,Ping WANG,Yuan-wei YANG. Building extraction based on multiple multiscale-feature fusion attention network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1924-1934.
[14] Wei-hang CHEN,Qiang LUO,Teng-fei WANG,Wen-sheng ZHANG,Liang-wei JIANG. Reliability analysis of post-construction settlement of DMC composite foundation and design optimization[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2019-2027.
[15] Tong CHEN,Jian-feng GUO,Xin-zhong HAN,Xue-li XIE,Jian-xiang XI. Visible and infrared image matching method based on generative adversarial model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 63-74.