Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (6): 1088-1096, 1134    DOI: 10.3785/j.issn.1008-973X.2022.06.005
    
Design and optimization of single-finger soft grasp based on strawberry curve
Jian LI1(),Chu-yan DAI1,Yang-wei WANG1,Yan-ling GUO1,Fu-sheng ZHA2
1. Key Laboratory of Forestry Intelligent Equipment Engineering of Heilongjiang Province, Northeast Forestry University, Harbin 150040, China
2. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150090, China
Download: HTML     PDF(3112KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The structure of the traditional three-finger soft gripper was improved, and a new type of single-finger soft grip was designed based on the strawberry curve for non-destructive grabbing in the process of picking strawberry. Firstly, the structure of the single-finger gripper was optimized based on Abaqus simulation software to realize the complete package of the soft gripper and improve the bending performance. And the manufacturing process was improved to effectively enhance the reuse rate and safety of the single finger gripper. Then, using high speed camera and dynamic capture technology, the bending deformation law of the upper and lower end faces of the single finger gripper was analyzed. Thirdly, both the minimum failure stress on surface of the strawberry and the end force of the soft gripper were test, and the feasibility of nondestructive grasping was verified based on these results. Finally, the single-finger gripper was installed on the manipulator arm to carry out the strawberry grasping test. After simulating the natural growth state of strawberries, the success rate reached 80% and the damage rate was 7.5%. The results proved that the pneumatic single-finger soft gripper could realize the nondestructive grasping of strawberries.



Key wordssoft robot      pneumatic      finite element simulation      optimization design      strawberry grasping experiment     
Received: 16 June 2021      Published: 30 June 2022
CLC:  TH 138  
Fund:  国家自然科学基金资助项目(51905084)
Cite this article:

Jian LI,Chu-yan DAI,Yang-wei WANG,Yan-ling GUO,Fu-sheng ZHA. Design and optimization of single-finger soft grasp based on strawberry curve. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1088-1096, 1134.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.06.005     OR     https://www.zjujournals.com/eng/Y2022/V56/I6/1088


基于草莓轮廓曲线的单指软体采摘抓手设计与优化

针对草莓采摘过程中的无损抓取作业需求,改进传统三指软体抓手的结构,基于草莓外部轮廓曲线设计新型单指软体抓手. 基于Abaqus仿真软件对单指抓手完成结构优化,提升弯曲性能,实现软体抓手的完整包裹效果. 改进制造工艺,有效提升单指抓手的重复使用率和安全性. 利用高速摄像机和动态捕捉技术,分析单指抓手上下端面的弯曲变形规律. 测试草莓表面的最小破坏应力和单指抓手的末端力,验证了无损抓取的可行性. 将单指抓手安装在机械臂上进行草莓抓取测试,在模拟草莓自然生长状态时,抓取成功率为80%,破损率为7.5%. 结果表明,气动单指软体抓手可以实现草莓的无损抓取.


关键词: 软体机器人,  气动驱动,  有限元仿真,  优化设计,  草莓抓取实验 
Fig.1 Strawberry contour extraction process
Fig.2 Design curve of single finger gripper
参数 数值 参数 数值
单指抓手长度 $ L $ 110.0 气体腔室长度 $ {l_{\text{c}}} $ 4.0
单指抓手高度 $ H $ 38.2 气体腔室宽度 $ {w_{\text{c}}} $ 4.0
腔室层宽度 $ {W_{\text{q}}} $ 7.0 气体腔室间隔 $ {l_{\text{t}}} $ 5.0
腔室层高度 $ {H_{\text{q}}} $ 36.2 气体通道半径 $ {R_{\text{q}}} $ 2.5
加持部分长度 $ {L_{\text{j}}} $ 22.0 气管通道半径 $ {R_{\text{g}}} $ 1.5
气体腔室壁厚 $ {t_{\text{q}}} $ 3.0 限制层端面壁厚 $ {t_{\text{x}}} $ 1.0
Tab.1 Design parameters of single finger gripper mm
Fig.3 Schematic of single finger gripper
Fig.4 Influence of wall thickness parameters on bending performance of actuator
Fig.5 Structure optimization process of single finger gripper
Fig.6 Simulation results of three types of single finger gripper
Fig.7 Manufacturing process of single gripper
Fig.8 Positioning of single finger gripper points
Fig.9 Bending test of single finger gripper
Fig.10 Analysis of damage stress on strawberry surface
Fig.11 Test of single finger gripper end force
Fig.12 Position of single finger gripper observation point
Fig.13 Spatial displacement of blade observation point single finger gripper
Fig.14 Grasp experiment of single finger gripper
[1]   GALLOWAY K C, BECKER K P, PHILLIPS B, et al Soft robotic grippers for biological sampling on deep reefs[J]. Soft Robot, 2016, 3 (1): 23- 33
doi: 10.1089/soro.2015.0019
[2]   FERREIRA M D, SANCHEZ A C, BRAUNBECK O A, et al Harvesting fruits using a mobile platform: a case study applied to citrus[J]. Engenharia Agrícola, 2018, 38 (2): 293- 299
[3]   MATSUNAGA T, OHNISHI K, WADA N, et al Development of small-diameter haptic flexible gripping forceps robot[J]. Electrical Engineering in Japan, 2020, 211 (1/4): 47- 54
[4]   陈至灵, 姜树海, 孙翊 农林业采收机器人发展现状[J]. 农业工程, 2019, 9 (2): 20- 28
CHEN Zhi-ling, JIANG Shu-hai, SUN Yi Development status of agroforestry harvesting robots[J]. Agricultural Engineering, 2019, 9 (2): 20- 28
[5]   金何 智能机器人在农业自动化领域的应用分析[J]. 南方农机, 2021, 52 (5): 58- 59
JIN He Application analysis of intelligent robot in agricultural automation field[J]. China Southern Agricultural Machinery, 2021, 52 (5): 58- 59
doi: 10.3969/j.issn.1672-3872.2021.05.023
[6]   陈子文, 杨明金, 李云伍, 等 基于气动无损夹持控制的番茄采摘末端执行器设计与试验[J]. 农业工程学报, 2021, 37 (2): 27- 35
CHEN Zi-wen, YANG Ming-jin, LI Yun-wu, et al Design and experiment of tomato picking end-effector based on non-destructive pneumatic clamping control[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (2): 27- 35
doi: 10.11975/j.issn.1002-6819.2021.2.004
[7]   吴剑桥, 范圣哲, 贡亮, 等 果蔬采摘机器手系统设计与控制技术研究现状和发展趋势[J]. 智慧农业(中英文), 2020, 2 (4): 17- 40
WU Jian-qiao, FAN Sheng-zhe, GONG Liang, et al Research status and development direction of design and control technology of fruit and vegetable picking robot system[J]. Smart Agriculture, 2020, 2 (4): 17- 40
[8]   LIN H, CAI K, CHEN H, et al Optimization design of fruit picking end-effector based on its grasping model[J]. Inmateh Agricultural Engineering, 2015, 47 (3): 81- 90
[9]   NIU Y Research state and trend of fruit picking robot manipulator structure[J]. International Journal of Plant Engineering and Management, 2020, 25 (1): 36- 50
[10]   KAPACH K, BARNEA E, MAIRON R, et al Computer vision for fruit harvesting robots: state of the art and challenges ahead[J]. International Journal of Computational Vision and Robotics, 2012, 3 (1/2): 4- 34
doi: 10.1504/IJCVR.2012.046419
[11]   张铁中, 杨丽, 陈兵旗, 等 农业机器人技术开展[J]. 中国科学: 信息科学, 2010, 40 (Suppl.1): 71- 87
ZHANG Tie-zong, YANG Li, CHEN Bing-qi, et al Research progress of agricultural robot technology[J]. Scientia Sinica: Informationis, 2010, 40 (Suppl.1): 71- 87
[12]   张凯良, 杨丽, 张铁中 草莓收获机器人末端执行器的设计[J]. 农机化研究, 2009, 31 (4): 54- 56
ZHANG Kai-liang, YANG Li, ZHANG Tie-zhong Design of an end-effector for strawberry harvesting robot[J]. Journal of Agricultural Mechanization Research, 2009, 31 (4): 54- 56
doi: 10.3969/j.issn.1003-188X.2009.04.016
[13]   HAYASHI S, SHIGEMATSU K, YAMAMOTO S, et al Evaluation of a strawberry-harvesting robot in a field test[J]. Biosystems Engineering, 2010, 105 (2): 160- 171
doi: 10.1016/j.biosystemseng.2009.09.011
[14]   纪超, 冯青春, 袁挺, 等 温室黄瓜采摘机器人系统研制及性能分析[J]. 机器人, 2011, 33 (6): 726- 730
FENG Chao, FENG Qing-chun, YUAN Ting, et al Development and performance analysis on cucumber harvesting robot system in greenhouse[J]. Robot, 2011, 33 (6): 726- 730
[15]   HAN K S, KIN S C, LEE Y B, et al Strawberry harvesting robot for bench-type cultivation[J]. Journal of Biosystems Engineering, 2012, 37 (1): 65- 74
doi: 10.5307/JBE.2012.37.1.065
[16]   DEIMEL R, BROCK O A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. The International Journal of Robotics Research, 2016, 35 (1-3): 161- 185
doi: 10.1177/0278364915592961
[17]   HUANG W, XIAO J, XU Z A variable structure pneumatic soft robot[J]. Scientific Reports, 2020, 10 (1): 18778
doi: 10.1038/s41598-020-75346-5
[18]   LOW J H, LEE W W, KHIN P M, et al Hybrid tele-manipulation system using a sensorized 3-D-printed soft robotic gripper and a soft fabric-based haptic glove[J]. IEEE Robotics and Automation Letters, 2017, 2 (2): 880- 887
doi: 10.1109/LRA.2017.2655559
[19]   POLYGERINOS P, CORRELL N, MORIN S A, et al Soft robotics: review of fluid ‐ driven intrinsically soft devices; manufacturing, sensing, control, and applications in human ‐ robot interaction[J]. Advanced Engineering Materials, 2017, 19 (12): 1700016
doi: 10.1002/adem.201700016
[20]   TAWK C, GILLETT A, PANHUIS M, et al A 3D-printed omni-purpose soft gripper[J]. IEEE Transactions on Robotics, 2019, 35 (5): 1268- 1275
doi: 10.1109/TRO.2019.2924386
[21]   MANTI M, HASSAN T, PASSETTI G, et al A bioinspired soft robotic gripper for adaptable and effective grasping[J]. Soft Robotics, 2015, 2 (3): 107- 116
doi: 10.1089/soro.2015.0009
[22]   LIU C H, CHIU C H. Optimal design of a soft robotic gripper with high mechanical advantage for grasping irregular objects [C]// 2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 2846-2851.
[23]   TONKENS S, LORENZETTI J, PAVONE M. Soft robot optimal control via reduced order finite element models [EB/OL]. [2021-06-11]. https://arxiv.org/pdf/2011.02092.pdf.
[24]   POLYGERINOS P, WANG Z, OVERVELDE J T B, et al Modeling of soft fiber-reinforced bending actuators[J]. IEEE Transactions on Robotics, 2015, 31 (3): 778- 789
doi: 10.1109/TRO.2015.2428504
[25]   席作岩. 基于气动软体驱动器的仿生爬行机器人研究[D]. 哈尔滨: 哈尔滨工程大学, 2017: 21.
XI Zuo-yan. Research on biomimetic crawling robot based on pneumatic soft actuator [D]. Harbin: Harbin Engineering University, 2017: 21.
[1] Ji-dong LI,Ying ZHONG,Xing-fei LI. Actuating characteristics and influencing factors of magnetohydrodynamic momentum wheel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1676-1683.
[2] Miao LIN,Yong-jian JU,Gang MENG,Kun WANG,Yi CAO. Design and optimization of large range 2-DOF micro-positioning clamping system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1234-1244.
[3] Chi LEI,Meng-ling WU. Backstepping based precise control of brake cylinder pressure for train[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 462-471.
[4] Tian-ze HAO,Hua-ping XIAO,Shu-hai LIU,Chao ZHANG,Hao MA. Research status of integrated intelligent soft robots[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 229-243.
[5] Zhong-yu WANG,Ling WANG,Yan-li WANG,Bing WU. Traffic congestion prevention method during large-scale special events based on variable network topology optimization[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 358-366.
[6] Kai HUANG,Zhi-jian SUN,Wen-ying QIAN,Ji-hu YANG,Zi-tao YU,Ya-cai HU. Dimensionless material cost model of media gas-gas heat exchangers[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1362-1368.
[7] Bo-ping YU,Gao-hua LI,Liang XIE,Fu-xin WANG. Dynamic stall optimization design of rotor airfoil based on surrogate model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 833-842.
[8] Yan XU,Qin FANG,Chao ZHANG,Hong-wei LI. Driving and load performances of pneumatic soft self-folding manipulators[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 398-406.
[9] Jun WEI,Yong-xiao DU,Man-shu LIANG. Influence of fatigue stiffness degradation for beam structure on modal frequency[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 899-909.
[10] Peng ZHANG,Xiao-jian LIU,Shu-you ZHANG,Le-miao QIU,Guo-dong YI. Sparse hybrid uncertain variable optimization method and application[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 435-443.
[11] Fei FEI,Shen-yu LIU,Chang-cheng WU,De-hua YANG,Sheng-li ZHOU. Human kinetic energy harvesting technology based on magnetic levitation structure[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2215-2222.
[12] DAI Mei-ling, YANG Fu-jun, HE Xiao-yuan, DAI Xiang-jun. Compressive mechanical properties of new type of hollow sphere structure[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2043-2049.
[13] SONG Wei, JIANG Hong-jian, WANG Tao, GAO Zhen-fei, DU Zhen-tao, ZHU Shi-qiang. Optimization design and experimental research on magnetic components for wall-climbing robot[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1837-1844.
[14] LIAO Zi-nan, SHAO Xu-dong, QIAO Qiu-heng, CAO Jun-hui, LIU Xiang-ning. Static test and finite element simulation analysis of transverse bending of steel-ultra-high performance concrete composite slabs[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1954-1963.
[15] FAN Hai-gui, CHEN Zhi-ping, XU Feng, TANG Xiao-yu, SU Wen-qiang. Floating-roof tanks' distortion analysis based on measured settlement[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1824-1833.