Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (4): 711-717    DOI: 10.3785/j.issn.1008-973X.2022.04.010
    
Indoor positioning method of UAV based on improved MSCKF algorithm
Si-peng WANG(),Chang-ping DU*(),Guang-hua SONG,Yao ZHENG
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(992KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An indoor positioning method of unmanned aerial vehicle (UAV) based on improved multi-state constraint Kalman filter (MSCKF) was proposed aiming at the problem that the indoor positioning of UAV is prone to drift. A high robustness and low delay detection method was proposed under the framework of MSCKF. The pose of UAV was calculated with the help of the known positions of the mark points in world coordinate system. Then inertial measurement unit (IMU) data and monocular vision data fusion and UAV pose correction were realized. The proposed positioning method was tested. The simulation results show that the positioning error of the proposed method was within 0.266 m, and the positioning accuracy was improved by more than 54.6% compared to OpenVins and LARVIO.



Key wordsunmanned aerial vehicle (UAV)      indoor positioning      Kalman filter      mark detection      pose correction     
Received: 20 May 2021      Published: 24 April 2022
CLC:  TP 242  
Fund:  装备预研教育部联合基金资助项目(6141A02011803)
Corresponding Authors: Chang-ping DU     E-mail: wangsipeng@zju.edu.cn;duchangping@zju.edu.cn
Cite this article:

Si-peng WANG,Chang-ping DU,Guang-hua SONG,Yao ZHENG. Indoor positioning method of UAV based on improved MSCKF algorithm. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 711-717.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.04.010     OR     https://www.zjujournals.com/eng/Y2022/V56/I4/711


基于改进MSCKF的无人机室内定位方法

针对无人机室内定位容易出现漂移的问题,提出基于改进多状态约束卡尔曼滤波器(MSCKF)的无人机(UAV)室内定位方法. 该方法在MSCKF的框架下,提出高鲁棒性、低时延的标志点检测方法. 利用在世界坐标系下坐标已知的标志点计算得到无人机位姿,实现惯性测量单元(IMU)信息与单目视觉信息融合以及无人机位姿修正. 对提出的定位方法进行测试. 测试结果表明,该方法的定位误差小于0.266 m,与OpenVins和LARVIO开源算法相比,定位精度提高了54.6%以上.


关键词: 无人机(UAV),  室内定位,  卡尔曼滤波器,  标志点检测,  位姿修正 
Fig.1 Block diagram of positioning algorithm
Fig.2 Marks detection procedure
Fig.3 Performance test environment of positioning algorithm
Fig.4 Positioning results of trajectory 1 and trajectory 2
Fig.5 Error comparision of trajectory 1
算法 误差/m
轨迹1 轨迹2
本文算法 0.226 0.266
OpenVins 0.498 0.644
LARVIO 0.575
Tab.1 Positioning error of three algorithms for two trajectories
Fig.6 Error comparision of trajectory 2
算法 td/ms
本文算法 7.92
OpenVins 2.67
文献[13]算法 >22.22
Tab.2 Real-time analysis of positioning algorithms
[1]   USENKO V, ENGEL J, STÜCKLER J, et al. Direct visual-inertial odometry with stereo cameras [C]// 2016 IEEE International Conference on Robotics and Automation. Stockholm: IEEE, 2016: 1885-1892.
[2]   MUR-ARTAL R, TARDóS J D Visual-inertial monocular SLAM with map reuse[J]. IEEE Robotics and Automation Letters, 2017, 2 (2): 796- 803
doi: 10.1109/LRA.2017.2653359
[3]   MUR-ARTAL R, MONTIEL J M M, TARDOS J D ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31 (5): 1147- 1163
doi: 10.1109/TRO.2015.2463671
[4]   MUR-ARTAL R, TARDóS J D Orb-slam2: an open-source slam system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33 (5): 1255- 1262
doi: 10.1109/TRO.2017.2705103
[5]   CASTELLANOS J A, NEIRA J, JD T Limits to the consistency of EKF-based SLAM[J]. IFAC Proceedings Volumes, 2004, 37 (8): 716- 721
doi: 10.1016/S1474-6670(17)32063-3
[6]   MOURIKIS A I, ROUMELIOTIS S I. A multi-state constraint Kalman filter for vision-aided inertial navigation [C]// Proceedings of 2007 IEEE International Conference on Robotics and Automation. Roma: IEEE, 2007: 3565-3572.
[7]   SUN K, MOHTA K, PFROMMER B, et al Robust stereo visual inertial odometry for fast autonomous flight[J]. IEEE Robotics and Automation Letters, 2018, 3 (2): 965- 972
doi: 10.1109/LRA.2018.2793349
[8]   GENEVA P, ECKENHOFF K, LEE W, et al. Openvins: a research platform for visual-inertial estimation [C]// 2020 IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 4666-4672.
[9]   QIU X, ZHANG H, FU W Lightweight hybrid visual-inertial odometry with closed-form zero velocity update[J]. Chinese Journal of Aeronautics, 2020, 33 (12): 3344- 3359
doi: 10.1016/j.cja.2020.03.008
[10]   HUAI Z, HUANG G. Robocentric visual-inertial odometry [C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2018: 6319-6326.
[11]   MA F, SHI J, YANG Y, et al ACK-MSCKF: tightly-coupled Ackermann multi-state constraint Kalman filter for autonomous vehicle localization[J]. Sensors, 2019, 19 (21): 4816
doi: 10.3390/s19214816
[12]   ZHENG F, TSAI G, ZHANG Z, et al. Trifo-VIO: robust and efficient stereo visual inertial odometry using points and lines [C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2018: 3686-3693.
[13]   BAVLE H, MANTHE S, DE L P P, et al. Stereo visual odometry and semantics based localization of aerial robots in indoor environments [C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2018: 1018-1023.
[14]   LEVINSON J, MONTEMERLO M, THRUN S. Map-based precision vehicle localization in urban environments [C]// Robotics: Science and Systems. Atlanta: [s. n.], 2007: 1.
[15]   LEVINSON J, THRUN S. Robust vehicle localization in urban environments using probabilistic maps [C]// 2010 IEEE International Conference on Robotics and Automation. Anchorage: IEEE, 2010: 4372-4378.
[16]   QIN T, LI P, SHEN S Vins-mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34 (4): 1004- 1020
doi: 10.1109/TRO.2018.2853729
[17]   QIN T, SHEN S. Online temporal calibration for monocular visual-inertial systems [C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2018: 3662-3669.
[18]   徐晓苏, 代维, 杨博, 等 室内环境下基于图优化的视觉惯性SLAM方法[J]. 中国惯性技术学报, 2017, 25 (3): 313- 319
XU Xiao-su, DAI Wei, YANG Bo, et al Visual-aid inertial SLAM method based on graph optimization in indoor[J]. Journal of Chinese Inertial Technology, 2017, 25 (3): 313- 319
[19]   HARRIS C G, STEPHENS M. A combined corner and edge detector [C]// Alvey Vision Conference. Manchester: [s. n.], 1988: 10-5244.
[1] Cheng-qian GUO,Gang MA,Jiang-zhou MEI,Gui-ke ZHANG,Hong-bi LI,Wei ZHOU. Exterior deformation reconstruction of rockfill dam based on InSAR and multi-source data fusion[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 347-355.
[2] Chuan-hui WU,Jia LIAO,Shi-yong XIONG,Ying-jie NIU,Bo ZHOU. Contour matching method of groove track based on laser sensor[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1607-1614.
[3] Si-xiao WANG,Wen-jun ZHAO,Hao ZHANG,Yong GAO,Pu-sen LI. Cascade TD-PID control algorithm for coaxial anti-propeller unmanned aerial vehicle based on tracking differentiator[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2359-2364.
[4] Ke-bing LEI,Zi-qiang CHEN. Estimation of state of charge of battery based on improved multi-innovation extended Kalman filter[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1978-1985.
[5] Zhi-peng XI,Zhuo LOU,Xiao-xia LI,Yan SUN,Qiang YANG,Wen-jun YAN. Vision-based localization and navigation for UAV inspection in photovoltaic farms[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 880-888.
[6] WANG Ri-jun, ZHAO Chang-jun, BAI Yue, ZENG Zhi-qiang, DU Wen-hua, DUAN Neng-quan. Faults detection and self-reconfiguration for execution units of Hex-Rotor unmanned aerial vehicle based on multiple fault classification[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1406-1414.
[7] LIU Jing-ming, HUANG Ping-jie, HOU Di-bo, ZHANG Guang-xin, ZHANG Hong-jian. Dynamic pollutant concentration correction method for river sudden pollution[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2459-2465.
[8] CUI Ren-jie, MENG Tao, HUO Jun-hai, JIN Zhong-he. On-orbit calibration technique for residual magnetism fluctuation of micro-satellite[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2444-2450.
[9] YE Xiao-wei, LIU Tan, DONG Chuan-zhi, CHEN Bin. Structural damage detection based on Kalman filter and neutral axis location[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 2012-2018.
[10] HUANG Ji yang,MENG Jun,ZHANG Ran. Three-dimensional indoor positioning technology based on characteristic light source[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1393-1401.
[11] SONG Kai chen, ZENG Yao, YE Ling yun . Vortex signal processing method based on multi-sensor information fusion[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1307-1312.
[12] YANG Hui lin, HUANG Zhi gang, LIU Jiu wen, DU Yuan feng. WIFI fingerprinting localization based on Kernel Fuzzy C means II Clustering[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1126-1133.
[13] MO Yuan fu, YU De xin, SONG Jun, GUO Ya juan. Beacon message generating strategy based on channel load preset threshold in VANET environment[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 21-26.
[14] ZHU Guang-ming, JIANG Rong-xin, ZHOU Fan, TIAN Xiang, CHEN Yao-wu. Robust Kalman filtering algorithm with estimation of measurement biases[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1343-1349.
[15] FU Xing-wei, WU Gong-ping, ZHOU Peng, YU Na. Energy-consumption estimation of inspection robot based on Kalman filter[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 670-675.