Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2026, Vol. 60 Issue (2): 279-286    DOI: 10.3785/j.issn.1008-973X.2026.02.006
    
Demagnetization fault diagnosis of controllable hybrid magnetic couplers based on deep neural networks
Shuang WANG1,2,3(),Xitai ZHANG2,3,Yongcun GUO1,2,3,Shousuo SUN2,3
1. State Key Laboratory of Digital Intelligent Technology for Unmanned Coal Mining, Anhui University of Science and Technology, Huainan 232001, China
2. Collaborative Innovation Center for Mining Intelligent Technology and Equipment, Anhui University of Science and Technology, Huainan 232001, China
3. School of Mechatronics Engineering, Anhui University of Science and Technology, Huainan 232001, China
Download: HTML     PDF(2447KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The demagnetization degree of a controllable hybrid magnetic coupler has a significant influence on its transmission performance, and accurate diagnosis is essential for stable operation. A demagnetization fault diagnosis method combining the Gramian angular summation field (GASF) and an improved residual network (ResNet) was proposed. Current density data at different positions in the air gap were obtained through finite element simulation. One-dimensional time-series data were converted into two-dimensional images using the GASF method to enhance feature representation. An attention mechanism was embedded into the ResNet structure to improve the network’s ability to learn fault features and perform classification. Experimental results show that the proposed method achieves an average diagnostic accuracy of 97.67%, which is higher than those of EfficientNet, RepVGG, ViT, and AlexNet by 15.04, 14.73, 10.66, and 9.37 percentage points, respectively. Furthermore, an experimental platform was established to verify the effectiveness of the proposed method in demagnetization fault diagnosis of controllable hybrid magnetic couplers, and an identification accuracy of 96.5% was achieved for actual demagnetization faults.



Key wordsmagnetic coupler      Gramian angular summation field (GASF)      residual network (ResNet)      attention mechanism      fault diagnosis     
Received: 08 February 2025      Published: 03 February 2026
CLC:  TH 133  
Fund:  安徽省高校杰出青年科研项目(2022AH020056);国家自然科学基金资助项目(52274152);安徽省自然科学优秀青年科研基金资助项目(2308085Y37).
Cite this article:

Shuang WANG,Xitai ZHANG,Yongcun GUO,Shousuo SUN. Demagnetization fault diagnosis of controllable hybrid magnetic couplers based on deep neural networks. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 279-286.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2026.02.006     OR     https://www.zjujournals.com/eng/Y2026/V60/I2/279


基于深度网络的可控混合式磁力耦合器退磁诊断

可控混合式磁力耦合器的退磁程度直接影响耦合器的传动性能,准确诊断是保障稳定运行的关键. 为此,将格拉姆角和场(GASF)与改进残差网络(ResNet)结合提出退磁故障诊断方法. 通过有限元仿真提取耦合器气隙内不同位置的电流密度数据,利用GASF方法将一维时序数据转换为二维图像,以增强特征表达能力. 在此基础上,将注意力机制嵌入ResNet结构,提升网络对故障细节特征的学习与分类能力. 实验表明,所提方法在测试集上的平均诊断准确率为97.67%,较EfficientNet、RepVGG、ViT、AlexNet分别提升15.04、14.73、10.66和 9.37个百分点. 通过实验平台验证所提方法在可控混合式磁力耦合器退磁故障诊断中的有效性和优越性,该方法对真实退磁故障的识别准确率为96.5%.


关键词: 磁力耦合器,  格拉姆角和场(GASF),  残差网络(ResNet),  注意力机制,  故障诊断 
Fig.1 Structural model of controllable hybrid magnetic coupler
Fig.2 Equivalent magnetic circuit diagram of main magnetic flux for controllable hybrid magnetic coupler
参数数值参数数值
气隙长度/m0.007永磁体厚度/m0.003
铜盘半径/m0.030永磁体宽度/m0.008
铜盘厚度/m0.005永磁体长度/m0.010
Tab.1 Model parameters of controllable hybrid magnetic coupler
Fig.3 Magnetic curves of sintered Nd-Fe-B (grade N35) under various demagnetization levels
Fig.4 Schematic diagram of magnetic density distribution and magnetic field strength of permanent magnets under various demagnetization levels
Fig.5 Gramian angular summation field encoding process
退磁类型标签样本数量
训练集测试集
正常Co500125
40%退磁Re40500125
80%退磁Re80500125
Tab.2 Current density dataset content
Fig.6 Schematic diagrams of different residual-block architectures
Fig.7 Schematic diagram of improved residual network architecture based on attention mechanism
层级卷积核大小步长输入通道输出通道激活函数
卷积层172364ReLu
池化层132
SResidual×8
池化层271
全连接层12048512
全连接层25123
Tab.3 Demagnetization fault diagnosis model parameters
层级卷积核大小步长输入通道输出通道激活函数
卷积层131256256ReLu
卷积层231256256ReLu
卷积层331512512ReLu
卷积层431512512ReLu
池化层71
全连接层151232
全连接层232512Sigmoid
Tab.4 Spatial residual module parameters
Fig.8 Accuracy of ten experiments for demagnetization fault diagnosis model
故障标签PRF1
0197.7295.2395.32
0296.0195.0196.95
0398.1196.8997.50
Tab.5 Fault diagnosis results for demagnetization fault diagnosis model %
模型AccPRF1
MTF+SNN86.3383.6985.1484.37
CWT+SNN82.0681.6485.5281.54
GASF+EfficientNet82.6381.7781.8481.79
GASF+RepVGG82.9483.7684.2583.99
GASF+ViT87.0185.8986.6486.23
GASF+AlexNet88.3088.5087.8988.11
GASF+ResNet92.6390. 5588.9489.72
GASF+ResNet_layer191.2890.2789.5289.89
GASF+ResNet_layer493.7193.0991.3392.20
GANN97.6797.2895.7196.59
Tab.6 Module ablation experiment results of demagnetization fault diagnosis model %
Fig.9 Performance-parameter comparison across modules of demagnetization fault diagnosis model
Fig.10 Experimental platform for controllable hybrid magnetic coupler
退磁类型Br/T$\overline B_{\mathrm{r}} $/T均匀性误差/%
正常1.48~1.521.50±1.3
退磁40%0.88~0.920.90±2.2
退磁80%0.29~0.310.30±3.3
Tab.7 Actual measurement data of residual magnetic strength for permanent magnets
退磁类型I/A谐波占比/%高频噪声能量占比/%
正常4.8~10.2<5<3
退磁40%2.9~6.110~158~12
退磁80%0.8~3.220~3015~25
Tab.8 Analysis of current signal characteristics for magnetic coupler
Fig.11 Classification results of demagnetization fault diagnosis model on real data
[9]   郑近德, 潘海洋, 程军圣, 等 基于自适应经验傅里叶分解的机械故障诊断方法[J]. 机械工程学报, 2020, 56 (9): 125- 136
ZHENG Jinde, PAN Haiyang, CHENG Junsheng, et al Adaptive empirical Fourier decomposition based mechanical fault diagnosis method[J]. Journal of Mechanical Engineering, 2020, 56 (9): 125- 136
[10]   李兵, 韩睿, 何怡刚, 等 改进随机森林算法在电机轴承故障诊断中的应用[J]. 中国电机工程学报, 2020, 40 (4): 1310- 1319
LI Bing, HAN Rui, HE Yigang, et al Applications of the improved random forest algorithm in fault diagnosis of motor bearings[J]. Proceedings of the CSEE, 2020, 40 (4): 1310- 1319
[11]   赵国栋. 基于多层感知机的永磁同步电机退磁故障诊断 [D]. 哈尔滨: 哈尔滨工业大学, 2023: 1–91.
ZHAO Guodong. Demagnetization fault diagnosis of permanent magnet synchronous motor based on multi-layer perceptron [D]. Harbin: Harbin Institute of Technology, 2023: 1–91.
[12]   宋雪玮, 赵吉文, 董菲, 等 基于PSO-LSSVM的永磁同步直线电机局部退磁故障识别[J]. 中国电机工程学报, 2019, 39 (8): 2426- 2435
SONG Xuewei, ZHAO Jiwen, DONG Fei, et al Local demagnetization fault recognition of permanent magnet synchronous linear motor based on PSO-LSSVM[J]. Proceedings of the CSEE, 2019, 39 (8): 2426- 2435
[13]   蔡锷, 李春明, 刘东民, 等 基于局部均值分解和K近邻算法的滚动轴承故障诊断方法[J]. 现代电子技术, 2015, 38 (13): 50- 52
CAI E, LI Chunming, LIU Dongmin, et al Fault diagnosis method based on LMD and KNN algorithms for rolling bearing[J]. Modern Electronics Technique, 2015, 38 (13): 50- 52
[14]   张丹, 赵吉文, 董菲, 等 基于概率神经网络算法的永磁同步直线电机局部退磁故障诊断研究[J]. 中国电机工程学报, 2019, 39 (1): 296- 306
ZHANG Dan, ZHAO Jiwen, DONG Fei, et al Partial demagnetization fault diagnosis research of permanent magnet synchronous motors based on the PNN algorithm[J]. Proceedings of the CSEE, 2019, 39 (1): 296- 306
[1]   寇宝泉, 张鲁, 邢丰, 等 高性能永磁同步平面电机及其关键技术发展综述[J]. 中国电机工程学报, 2013, 33 (9): 79- 87
KOU Baoquan, ZHANG Lu, XING Feng, et al Development of the high-performance synchronous permanent magnet planar motor and its key technologies[J]. Proceedings of the CSEE, 2013, 33 (9): 79- 87
[15]   谢乐, 衡熙丹, 刘洋, 等 基于线性判别分析和分步机器学习的变压器故障诊断[J]. 浙江大学学报: 工学版, 2020, 54 (11): 2266- 2272
XIE Le, HENG Xidan, LIU Yang, et al Transformer fault diagnosis based on linear discriminant analysis and step-by-step machine learning[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (11): 2266- 2272
[16]   SU Y, MENG L, KONG X, et al Small sample fault diagnosis method for wind turbine gearbox based on optimized generative adversarial networks[J]. Engineering Failure Analysis, 2022, 140: 106573
[17]   ALSUMAIDAEE Y A M, PAW J K S, YAW C T, et al Fault detection for medium voltage switchgear using a deep learning hybrid 1D-CNN-LSTM model[J]. IEEE Access, 2023, 11: 97574- 97589
[18]   韩康, 战洪飞, 余军合, 等 基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断[J]. 浙江大学学报: 工学版, 2024, 58 (6): 1285- 1295
HAN Kang, ZHAN Hongfei, YU Junhe, et al Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (6): 1285- 1295
[19]   邱建琪, 沈佳晨, 史涔溦, 等 基于残差卷积网络的多传感器融合永磁同步电机故障诊断[J]. 电机与控制学报, 2024, 28 (7): 24- 33
QIU Jianqi, SHEN Jiachen, SHI Cenwei, et al Fault diagnosis of multi-sensor fusion permanent magnet synchronous motor based on residual convolutional neural network[J]. Electric Machines and Control, 2024, 28 (7): 24- 33
[2]   陈本永, 潘科荣, 杨涛, 等 磁场同步跟随式电磁悬浮微驱动器的理论分析与建模[J]. 中国机械工程, 2008, 19 (21): 2637- 2642
CHEN Benyong, PAN Kerong, YANG Tao, et al Analysis and modeling of an electromagnetic levitation micro-actuator[J]. China Mechanical Engineering, 2008, 19 (21): 2637- 2642
[3]   MENG Z, ZHU Z, SUN Y 3-D analysis for the torque of permanent magnet coupler[J]. IEEE Transactions on Magnetics, 2015, 51 (4): 8002008
[4]   FLORIO F, SINHA G, SUNDARARAMAN R Designing high-accuracy permanent magnets for low-power magnetic resonance imaging[J]. IEEE Transactions on Magnetics, 2018, 54 (5): 5300209
doi: 10.1109/tmag.2018.2795592
[5]   何富君, 仲于海, 张瑞杰, 等 永磁涡流耦合传动特性研究[J]. 机械工程学报, 2016, 52 (8): 23- 28
HE Fujun, ZHONG Yuhai, ZHANG Ruijie, et al Research on characteristics of permanent magnet eddy-current coupling drive[J]. Journal of Mechanical Engineering, 2016, 52 (8): 23- 28
[6]   HÖGBERG S, BENDIXEN F B, MIJATOVIC N, et al. Influence of demagnetization-temperature on magnetic performance of recycled Nd-Fe-B magnets [C]// Proceedings of the IEEE International Electric Machines and Drives Conference. Coeur d’Alene: IEEE, 2016: 1242–1246.
[7]   赵学智, 叶邦彦, 陈统坚 基于小波—奇异值分解差分谱的弱故障特征提取方法[J]. 机械工程学报, 2012, 48 (7): 37- 48
ZHAO Xuezhi, YE Bangyan, CHEN Tongjian Extraction method of faint fault feature based on wavelet-SVD difference spectrum[J]. Journal of Mechanical Engineering, 2012, 48 (7): 37- 48
[8]   耿志强, 陈威, 马波, 等 基于连续小波卷积神经网络的轴承智能故障诊断方法[J]. 浙江大学学报: 工学版, 2024, 58 (10): 2069- 2075
GENG Zhiqiang, CHEN Wei, MA Bo, et al Bearing intelligent fault diagnosis method based on continuous wavelet convolutional neural network[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (10): 2069- 2075
[20]   CALIN M D, HELEREA E. Temperature influence on magnetic characteristics of NdFeB permanent magnets [C]// Proceedings of the 7th International Symposium on Advanced Topics in Electrical Engineering. Bucharest: IEEE, 2011: 1–6.
[1] Siyao ZHOU,Nan XIA,Jiahong JIANG. Pose-guided dual-branch network for clothing-changing person re-identification[J]. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 71-80.
[2] Fujian WANG,Zetian ZHANG,Xiqun CHEN,Dianhai WANG. Usage prediction of shared bike based on multi-channel graph aggregation attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1986-1995.
[3] Xuejun ZHANG,Shubin LIANG,Wanrong BAI,Fenghe ZHANG,Haiyan HUANG,Meifeng GUO,Zhuo CHEN. Source code vulnerability detection method based on heterogeneous graph representation[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1644-1652.
[4] Yishan LIN,Jing ZUO,Shuhua LU. Multimodal sentiment analysis based on multi-head self-attention mechanism and MLP-Interactor[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1653-1661.
[5] Yahong ZHAI,Yaling CHEN,Longyan XU,Yu GONG. Improved YOLOv8s lightweight small target detection algorithm of UAV aerial image[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1708-1717.
[6] Jiarui FU,Zhaofei LI,Hao ZHOU,Wei HUANG. Camouflaged object detection based on Convnextv2 and texture-edge guidance[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1718-1726.
[7] Rongtai YANG,Yubin SHAO,Qingzhi DU. Structure-aware model for few-shot knowledge completion[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1394-1402.
[8] Shengju WANG,Zan ZHANG. Missing value imputation algorithm based on accelerated diffusion model[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1471-1480.
[9] Aiying HUANG,Xiaohui LI,Shuxian SUN,Yiqun ZHU. Causal disentanglement-based domain adaptation for rolling bearing fault diagnosis[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1523-1531.
[10] Yongqing CAI,Cheng HAN,Wei QUAN,Wudi CHEN. Visual induced motion sickness estimation model based on attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1110-1118.
[11] Wenbo JU,Huajun DONG. Motherboard defect detection method based on context information fusion and dynamic sampling[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1159-1168.
[12] Xiangyu ZHOU,Yizhi LIU,Yijiang ZHAO,Zhuhua LIAO,Decheng ZHANG. Hierarchical spatial embedding BiGRU model for destination prediction[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1211-1218.
[13] Shuang WANG,Shousuo SUN,Yongcun GUO,Zeyong HU. Multi-objective parameter optimization of gapping device for electromagnetic hybrid coupler[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 1007-1017.
[14] Zongmin LI,Chang XU,Yun BAI,Shiyang XIAN,Guangcai RONG. Dual-neighborhood graph convolution method for point cloud understanding[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 879-889.
[15] Changqing ZHOU,Yaochun HOU,Peng WU,Shuai YANG,Dazhuan WU. Adaptive sparse representation atom construction method for gearbox diagnosis[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 1018-1030.