Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2026, Vol. 60 Issue (1): 127-137    DOI: 10.3785/j.issn.1008-973X.2026.01.012
    
Federated collaborative framework-based semi-supervised remaining useful life prediction under cross-operating conditions
Qiyuan LI1(),Xin CHENG1,Wenqing MA1,Kaigan ZHANG1,Tangbin XIA1,2,*(),Lifeng XI1,2
1. Department of Industrial Engineering and Management, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. Special Environment Digital Manufacturing Equipment Technology Innovation Center, Mianyang 621900, China
Download: HTML     PDF(1854KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In response to the distribution differences under different operating conditions and the privacy protection constraints of signal data, a semi-supervised domain adversarial federated collaborative model (SAFCM) was designed to realize the remaining useful life prediction of mechanical equipment under cross-operating conditions and privacy preservation. A bidirectional attention temporal convolutional network was designed to extract domain-invariant features through two directions of channel attention mechanism and self-attention mechanism. By using this convolutional network as a feature extractor, a cross-operating-condition semi-supervised domain adversarial model (COCSAM) was constructed to achieve highly robust domain adaptation between imbalanced domains through domain adversarial learning and domain distance measurement. The COCSAM was integrated into the federated collaborative framework to build the SAFCM. Through differentiated distribution and dynamic weighted updates of the sub-models, asynchronous network updates were achieved under data privacy protection, promoting the full utilization of data and efficient domain adaptation. Two datasets from different application scenarios were utilized to conduct the interpretability analysis and robustness study, the results of which demonstrated the robustness and superiority of the proposed SAFCM in real industrial scenarios.



Key wordsremaining useful life      semi-supervision      domain adaptation      cross-operating condition      federated learning     
Received: 28 February 2025      Published: 15 December 2025
CLC:  TH 17  
Fund:  国家重点研发计划资助项目(2022YFF0605700);上海市自然科学基金资助项目(25ZR1401196).
Corresponding Authors: Tangbin XIA     E-mail: communicate@sjtu.edu.cn;xtbxtb@sjtu.edu.cn
Cite this article:

Qiyuan LI,Xin CHENG,Wenqing MA,Kaigan ZHANG,Tangbin XIA,Lifeng XI. Federated collaborative framework-based semi-supervised remaining useful life prediction under cross-operating conditions. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 127-137.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2026.01.012     OR     https://www.zjujournals.com/eng/Y2026/V60/I1/127


联邦协作框架下的跨工况半监督剩余使用寿命预测

针对不同工况下信号数据分布的差异性与隐私保护限制,设计半监督域对抗联邦协作模型(SAFCM),实现数据跨工况和隐私保护下机械设备的剩余寿命预测. 设计双向注意力时序卷积网络,从通道注意力和自注意力机制2个方向进行域不变特征提取;以该卷积网络作为特征提取器,构建跨工况半监督域对抗模型(COCSAM),通过域对抗学习和域距离度量在不平衡域之间实现高鲁棒性的域适应;将COCSAM集成到联邦协作框架中,搭建SAFCM,通过子模型的差异化分布和动态加权更新,实现数据隐私保护下的网络异步更新,促进数据的充分利用和高效域适应. 采用2个不同应用场景下的数据集进行解释性分析和鲁棒性研究,结果证明所提模型在真实工业场景中具有稳健性和优越性.


关键词: 剩余使用寿命,  半监督,  域适应,  跨工况,  联邦学习 
Fig.1 Overall framework diagram of semi-supervised domain adversarial federated collaborative model
Fig.2 Domain adaptation multi-objective balanced optimization framework in COCSAM
Fig.3 Federated communication flow of SAFCM
子模型$ {k_{{\mathrm{size}}}} $$ {p_{{\mathrm{drop}}}} $$ {h_{{\mathrm{hid}}}} $
特征提取器方向一(5, 2)(0.2, 0)
特征提取器方向二(3, 7)
域判别器(0.2, 0.2, 0.2)(64, 32, 2)
回归预测器(0.2, 0.2, 0, 0)(64, 32, 16, 1)
Tab.1 SAFCM network structure hyperparameters
Fig.4 Distribution of probability density for different domain features before and after domain adaptation
Fig.5 Interpretative analysis of domain adaptation results based on different sensor features
Fig.6 Prediction performance comparison of bidirectional attention temporal convolutional network and its directional variants
参数数值参数数值
$\eta $0.15${e_{\mathrm{l}}}$10
$\delta $1${e_{\mathrm{c}}}$10
$\gamma $0.8${b_{\rm{T}}}$125
$\lambda $0.8${n_{\mathrm{c}}}$5
$r$0.8$\alpha $0.01
${e_{\mathrm{M}}}$40$h$(30, 20, 30, 15)
Tab.2 Training hyperparameters for domain adaptation in SAFCM network
Fig.7 RUL prediction results of different prediction modes under cross-operating conditions
Fig.8 Domain adaptation RUL prediction results in FD003-FD001 task
Fig.9 Comparison of prediction results when adopting different engines under cross-operating conditions
Fig.10 Comparison of robustness of domain adaptation results under different hyperparameter values
方法RMSE1/cyclesRMSE2/cyclesScore1Score2
FD002FD003FD004FD001FD003FD004FD002FD003FD004FD001FD003FD004
DANN[24]31.2124.0727.2322.7122.4124.1812 415.324 005.819 016.182 289.483 700.225 349.81
CORAL[25]39.9742.0138.3535.4736.4037.2637 600.0746 826.0928 640.649 321.0513 314.3419 782.51
CADA[26]33.4317.9029.3717.4220.5524.8919 996.121 694.2811 581.88822.353 008.265 511.68
MCDA[27]42.1939.3734.5737.9636.4437.9640 147.2625 641.775 382.3811 059.267 686.8917 670.28
SAFCM20.3917.8921.8117.7321.2722.474 386.661 445.384 506.43863.152 626.984 372.02
方法RMSE3/cyclesRMSE4/cyclesScore3Score4
FD001FD002FD004FD001FD002FD003FD001FD002FD004FD001FD002FD003
DANN[24]22.2628.8625.4819.5122.8522.125 082.157 540.779 888.571 000.346 214.723 324.13
CORAL[25]35.6340.1038.5835.7338.3535.149 446.8135 069.4529 449.8010 294.3636 487.919 525.98
CADA[26]20.2528.6930.3225.5123.4220.341 341.1011 864.9612 018.762 780.707 204.243 323.91
MCDA[27]35.1840.8740.0239.3340.1637.085 334.8142 708.9045 589.3517 057.2452 331.2011 804.43
SAFCM18.0621.7022.6420.1021.4319.541 086.965 133.467 608.821 350.913 622.501 745.91
Tab.3 Comparison of domain adaptation prediction performance of SAFCM and other state-of-the-art methods
子数据集机床类型${N_1}$${N_2}$$ l_1^{\max }/{\mathrm{h}} $$ l_1^{\min } /{\mathrm{h}}$$ l_2^{\max } /{\mathrm{h}}$$ l_2^{\min }/{\mathrm{h}} $
${M_1}$数控铣削中心1001003 6332 4643 6912 356
${M_2}$数控车床1001004 1551 5524 4691 715
${M_3}$数控铣床1001002 1031 0391 9391 007
${M_4}$数控打孔机1001002 279692 29026
${M_5}$数控随动磨床1001002 4111 5532 4331 587
${M_6}$数控抛光机1001004 9784085 543554
Tab.4 Overall setting of sensor signals in manufacturing system scenario
方法RMSE1/cyclesRMSE2/cyclesRMSE3/cycles${{\mathrm{RMSE}}_{\mathrm{a}}}$/cycles
${M_2}$${M_4}$${M_6}$${M_4}$${M_5}$${M_6}$${M_1}$${M_6}$
DANN[24]24.9423.9111.4946.475.9526.0220.3628.9231.79
CORAL[25]28.6125.2516.0651.4513.6615.6716.3827.1727.95
CADA[26]27.4521.4917.8845.685.4214.8720.3425.6530.39
MCDA[27]24.6324.9917.7043.8910.8112.9522.3227.4729.79
SAFCM14.4720.879.6627.995.177.8016.0821.3526.45
方法RMSE4/cyclesRMSE5/cyclesRMSE6/cycles${d_{\min }}$
${M_1}$${M_2}$${M_6}$${M_4}$${M_6}$${M_1}$${M_5}$
DANN[24]32.9466.8825.7848.9132.7418.1517.30223.83
CORAL[25]26.0369.5327.8244.0131.1016.3211.37140.67
CADA[26]25.8368.5028.3141.9229.8417.9214.11214.08
MCDA[27]25.6868.1027.1442.7724.7617.6113.51179.29
SAFCM20.3066.3125.2938.5419.4616.2610.6686.49
Tab.5 RUL prediction results of computer numerical control machine tool dataset
[1]   FERREIRA C, GONÇALVES G Remaining useful life prediction and challenges: a literature review on the use of machine learning methods[J]. Journal of Manufacturing Systems, 2022, 63: 550- 562
doi: 10.1016/j.jmsy.2022.05.010
[2]   许昱晖, 舒俊清, 宋亚, 等 基于多时间尺度相似性的涡扇发动机寿命预测[J]. 浙江大学学报: 工学版, 2021, 55 (10): 1937- 1947
XU Yuhui, SHU Junqing, SONG Ya, et al Remaining useful life prediction of turbofan engine based on similarity in multiple time scales[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (10): 1937- 1947
[3]   SANZ-GORRACHATEGUI I, PASTOR-FLORES P, PAJOVIC M, et al Remaining useful life estimation for LFP cells in second-life applications[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1- 10
[4]   JIANG Y, ZHAO M, ZHAO W, et al Prediction of sea temperature using temporal convolutional network and LSTM-GRU network[J]. Complex Engineering Systems, 2021, 1: 6
[5]   GUO B, QIAO Z, DONG H, et al Temporal convolutional approach with residual multi-head attention mechanism for remaining useful life of manufacturing tools[J]. Engineering Applications of Artificial Intelligence, 2024, 128: 107538
doi: 10.1016/j.engappai.2023.107538
[6]   ZHANG Z, SONG W, LI Q Dual-aspect self-attention based on Transformer for remaining useful life prediction[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2505711
[7]   LIAO X, CHEN S, WEN P, et al Remaining useful life with self-attention assisted physics-informed neural network[J]. Advanced Engineering Informatics, 2023, 58: 102195
doi: 10.1016/j.aei.2023.102195
[8]   ZHAO K, JIA Z, JIA F, et al Multi-scale integrated deep self-attention network for predicting remaining useful life of aero-engine[J]. Engineering Applications of Artificial Intelligence, 2023, 120: 105860
doi: 10.1016/j.engappai.2023.105860
[9]   ZHU Y, ZI Y, XU J, et al An unsupervised dual-regression domain adversarial adaption network for tool wear prediction in multi-working conditions[J]. Measurement, 2022, 200: 111644
doi: 10.1016/j.measurement.2022.111644
[10]   MIAO M, YU J, ZHAO Z A sparse domain adaption network for remaining useful life prediction of rolling bearings under different working conditions[J]. Reliability Engineering & System Safety, 2022, 219: 108259
[11]   王昊, 肖慧灵, 王丽亚, 等 一种基于改进迁移策略与膨胀卷积神经网络的轴承故障诊断方法[J]. 工业工程与管理, 2022, 27 (1): 94- 101
WANG Hao, XIAO Huiling, WANG Liya, et al Bearing fault diagnosis based on improved transfer strategy and dilated convolutional neural network[J]. Industrial Engineering and Management, 2022, 27 (1): 94- 101
[12]   WU K, LI J, ZUO L, et al Weighted adversarial domain adaptation for machine remaining useful life prediction[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3526511
[13]   蔡伟立, 胡小锋, 刘梦湘 基于迁移学习的刀具剩余寿命预测方法[J]. 计算机集成制造系统, 2021, 27 (6): 1541- 1549
CAI Weili, HU Xiaofeng, LIU Mengxiang Prediction method of tool remaining useful life based on transfer learning[J]. Computer Integrated Manufacturing Systems, 2021, 27 (6): 1541- 1549
[14]   MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale: PMLR, 2017: 1273–1282.
[15]   ZHOU F, ZHANG Z, LI S Research on federated learning method for fault diagnosis in multiple working conditions[J]. Complex Engineering Systems, 2021, 1: 7
[16]   ZHANG Z, MING Y, WANG Y A federated transfer learning approach for surface electromyographic hand gesture recognition with emphasis on privacy preservation[J]. Engineering Applications of Artificial Intelligence, 2024, 136: 108952
doi: 10.1016/j.engappai.2024.108952
[17]   刘翀赫, 余官定, 刘胜利 基于无线D2D网络的分层联邦学习[J]. 浙江大学学报: 工学版, 2023, 57 (5): 892- 899
LIU Chonghe, YU Guanding, LIU Shengli Hierarchical federated learning based on wireless D2D networks[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (5): 892- 899
[18]   WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531–11539.
[19]   VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc, 2017: 6000–6010.
[20]   SILVA F M, ALMEIDA L B. Acceleration techniques for the backpropagation algorithm [C]// European Association for Signal Processing Workshop. Barcelona: EURASIP, 1990: 110–119.
[21]   SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation [C]// Proceedings of the International Conference on Prognostics and Health Management. Denver: IEEE, 2008: 1–9.
[22]   LI X, DING Q, SUN J Q Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering & System Safety, 2018, 172: 1- 11
[23]   韩冬阳, 林泽宇, 郑宇, 等 基于选择性深度神经网络集成的涡扇发动机剩余寿命预测[J]. 浙江大学学报: 工学版, 2022, 56 (11): 2109- 2118
HAN Dongyang, LIN Zeyu, ZHENG Yu, et al Remaining useful life estimation of turbofan engine based on selective ensemble of deep neural networks[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (11): 2109- 2118
[24]   DE OLIVEIRA DA COSTA P R, AKÇAY A, ZHANG Y, et al Remaining useful lifetime prediction via deep domain adaptation[J]. Reliability Engineering & System Safety, 2020, 195: 106682
[25]   SUN B, FENG J, SAENKO K. Correlation alignment for unsupervised domain adaptation [M]// CSURKA G. Domain adaptation in computer vision applications. Cham: Springer, 2017: 153–171.
[26]   RAGAB M, CHEN Z, WU M, et al Contrastive adversarial domain adaptation for machine remaining useful life prediction[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (8): 5239- 5249
doi: 10.1109/TII.2020.3032690
[1] Dongping ZHANG,Dawei WANG,Shuji HE,Siliang TANG,Zhiyong LIU,Zhongqiu LIU. Remaining useful life prediction of aircraft engines based on cross-dimensional feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1504-1513.
[2] Aiying HUANG,Xiaohui LI,Shuxian SUN,Yiqun ZHU. Causal disentanglement-based domain adaptation for rolling bearing fault diagnosis[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1523-1531.
[3] Lihong WANG,Xinqian LIU,Jing LI,Zhiquan FENG. Network intrusion detection method based on federated learning and spatiotemporal feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1201-1210.
[4] Zhen LU,Jianye LI,Yunquan DONG. Decentralized Byzantine robust algorithm based on model aggregation[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 492-500.
[5] Diao ZHOU,Xin XIONG,Jianhua ZHOU,Jing ZONG,Qi ZHANG. Convolutional neural network combined with subdomain adaptation for low sampling rate EMG-based gesture recognition[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2011-2019.
[6] Lan WU,Quan-long CUI. Heterogeneous domain adaptation based on pseudo label refinement and semantic alignment[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1876-1884.
[7] Chong-he LIU,Guan-ding YU,Sheng-li LIU. Hierarchical federated learning based on wireless D2D networks[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 892-899.
[8] Kun LIU,Xiao-song YANG. Surface defect identification of cross scene strip based on unsupervised domain adaptation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 477-485.
[9] Ren-peng MO,Xiao-sheng SI,Tian-mei LI,Xu ZHU. Bearing life prediction based on multi-scale features and attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1447-1456.
[10] Lan WU,Han WANG,Bin-quan LI,Chong-yang LI,Fan-shi KONG. Multi-source unsupervised domain adaption method based on self-supervised task[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 754-763.
[11] Dong-yang HAN,Ze-yu LIN,Yu ZHENG,Mei-mei ZHENG,Tang-bin XIA. Remaining useful life estimation of turbofan engine based on selective ensemble of deep neural networks[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2109-2118.
[12] Yu-hui XU,Jun-qing SHU,Ya SONG,Yu ZHENG,Tang-bin XIA. Remaining useful life prediction of turbofan engine based on similarity in multiple time scales[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1937-1947.
[13] Tian-zhong HU,Jian-bo YU. Life prediction of lithium-ion batteries based on multiscale decomposition and deep learning[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1852-1864.