Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (3): 492-500    DOI: 10.3785/j.issn.1008-973X.2024.03.006
    
Decentralized Byzantine robust algorithm based on model aggregation
Zhen LU(),Jianye LI,Yunquan DONG*()
1. School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Download: HTML     PDF(1085KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A verifiable decentralized federated learning method was proposed in a decentralized network containing an unknown number of Byzantine users, aiming at the problem that in federated learning, Byzantine users send arbitrary error messages that contaminate the global model and affect the security and effectiveness of federated learning. The SCORE function was employed in the proposed method, to assess the impact of unknown attribute users on the global model performance based on a validation dataset. Thereby malicious model updates were excluded and security gradient aggregation for safe and efficient federated learning was implemented. A thresholding mechanism was applied to the score results from the SCORE function to lower the error rate in user attribute classification and increase the fault tolerance for honest users. Theoretical demonstrations confirmed the convergence of the verifiable decentralized federated learning algorithm, and a considerable number of numerical experiments substantiated the method’s robustness concerning both the quantity of Byzantine users and the types of attacks. Results showed that the method achieved optimal classification accuracy compared to other fault-tolerant algorithms in the presence of same Byzantine attack conditions.



Key wordsfederated learning      Byzantine attack      secure aggregation      robust algorithm      decentralized network     
Received: 25 March 2023      Published: 05 March 2024
CLC:  TP 391.9  
Fund:  国家自然科学基金资助项目 (62071237);2023年江苏省研究生科研与实践创新计划资助项目 (SJCX23_0371).
Corresponding Authors: Yunquan DONG     E-mail: 3249723967@qq.com;yunquandong@nuist.edu.cn
Cite this article:

Zhen LU,Jianye LI,Yunquan DONG. Decentralized Byzantine robust algorithm based on model aggregation. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 492-500.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.03.006     OR     https://www.zjujournals.com/eng/Y2024/V58/I3/492


基于模型聚合的去中心化拜占庭鲁棒算法

针对联邦学习中拜占庭用户发送任意错误信息,污染全局模型,影响联邦学习安全性和有效性的问题,在含未知数量拜占庭用户的去中心化网络中,提出可验证的去中心化联邦学习方法. 该方法使用SCORE函数,基于验证数据集评估未知属性用户对于全局模型性能的影响,进而排除恶意模型更新并实施安全梯度聚合,实现安全高效的联邦学习. 对SCORE函数得分结果进行阈值划分,降低用户属性分类的错误率并提高诚实用户的容错率. 通过理论证明可验证的去中心化联邦学习算法的收敛性,并且通过大量数值实验验证所提方法对于拜占庭用户数量和攻击类型的鲁棒性. 实验结果表明, 在同等拜占庭攻击条件下,所提方法相较于其他容错算法具有更优的分类准确度.


关键词: 联邦学习,  拜占庭攻击,  安全聚合,  鲁棒算法,  去中心化网络 
Fig.1 Decentralized network model
Fig.2 Model aggregation route in decentralized federated learning
Fig.3 Model aggregation route under Byzantine attack
Fig.4 Accuracy of different algorithms for 25% of users performing sign-flipping attack
Fig.5 Accuracy of different algorithms for 50% of users performing sign-flipping attack
Fig.6 Accuracy of different algorithms for 50% of users performing label-flipping attack
Fig.7 Effect of threshold division on false positive and false negative
鲁棒算法A
无攻击高斯噪声标签反转
注:1) 前一个数据表示CIFAR-10数据集上的准确率,括号中数据表示MNIST数据集上的准确率.
FedAvg[1]70.25(99.29)1)10.00(11.35)51.37(94.58)
Trim_mean[11]70.78(99.34)10.29(11.35)46.74(94.47)
Krum[14]57.75(98.51)57.24(97.34)10.00(11.35)
RobustFedt[15]69.75(99.32)54.67(98.34)51.10(96.34)
可验证去中心化FL70.79(98.45)69.30(98.37)69.13(98.33)
Tab.1 Accuracy of different robust algorithms on CIFAR_10(MNIST) dataset
[16]   XIE C, KOYEJO S, GUPTA I. Zeno++: robust fully asynchronous SGD [C]// International Conference on Machine Learning . Vienna: PMLR, 2020: 10495−10503.
[17]   SO J, GÜLER B, AVESTIMEHR A S Byzantine-resilient secure federated learning[J]. IEEE Journal on Selected Areas in Communications, 2020, 39 (7): 2168- 2181
[18]   WANG H, MUÑOZ-GONZÁLEZ L, EKLUND D, et al. Non-IID data re-balancing at IoT edge with peer-to-peer federated learning for anomaly detection [C]// Proceedings of the 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks . New York: Association for Computing Machinery, 2021: 153−163.
[19]   KANG J, XIONG Z, NIYATO D, et al Reliable federated learning for mobile networks[J]. IEEE Wireless Communications, 2020, 27 (2): 72- 80
doi: 10.1109/MWC.001.1900119
[20]   GHOLAMI A, TORKZABAN N, BARAS J S. Trusted decentralized federated learning [C]// 2022 IEEE 19th Annual Consumer Communications and Networking Conference (CCNC) . Las Vegas: IEEE, 2022: 1−6.
[21]   ZHAO Y, ZHAO J, JIANG L, et al Privacy-preserving blockchain-based federated learning for IoT devices[J]. IEEE Internet of Things Journal, 2020, 8 (3): 1817- 1829
[22]   LU Y, HUANG X, ZHANG K, et al Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (4): 4298- 4311
doi: 10.1109/TVT.2020.2973651
[23]   肖丹. 去中心联邦学习中抗女巫和拜占庭攻击的研究[D]. 西安: 西安电子科技大学, 2022.
XIAO Dan. A study of resistance to witch and Byzantine attacks in decentralized federal learning [D]. Xi'an: Xi'an University of Electronic Science and Technology, 2022.
[24]   李丽萍. 基于模型聚合的分布式拜占庭鲁棒优化算法研究[D]. 安徽: 中国科学技术大学, 2020.
LI Liping. Research on distributed Byzantine robust optimization algorithm based on model aggregation [D]. Anhui: University of Science and Technology of China, 2020.
[25]   POLYAK B T Gradient methods for the minimisation of functionals[J]. USSR Computational Mathematics and Mathematical Physics, 1963, 3 (4): 864- 878
doi: 10.1016/0041-5553(63)90382-3
[1]   MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [C]// Artificial Intelligence and Statistics . Lauderdale: PMLR, 2017: 1273−1282.
[2]   LI T, SAHU A K, ZAHEER M, et al Federated optimization in heterogeneous networks[J]. Proceedings of Machine Learning and Systems, 2020, 2: 429- 450
[26]   刘铁岩, 陈薇, 王太峰, 等. 分布式机器学习算法理论与实践[M]. 北京: 机械工业出版社, 2018.
[27]   KRIZHEVSKY A. Learning multiple layers of features from tiny images [D]. Toronto: University of Toronto, 2009.
[28]   DENG L The mnist database of handwritten digit images for machine learning research [best of the web][J]. IEEE Signal Processing Magazine, 2012, 29 (6): 141- 142
doi: 10.1109/MSP.2012.2211477
[29]   CHEN T, LI M, LI Y, et al. Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems [EB/OL]. (2015−12−03). https://doi.org/10.48550/arXiv.1512.01274.
[3]   GHOLAMI A, TORKZABAN N, BARAS J S, et al. Joint mobility-aware UAV placement and routing in multi-hop UAV relaying systems [C]// Ad Hoc Networks: 12th EAI International Conference . Paris: Springer International Publishing, 2021: 55−69.
[4]   GAO H, HUANG H. Periodic stochastic gradient descent with momentum for decentralized training [EB/OL]. (2020−08−24). https://arxiv.org/abs/2008.10435.
[5]   LI X, YANG W, WANG S, et al. Communication-efficient local decentralized sgd methods [EB/OL]. (2021−04−05). https://doi.org/10.48550/arXiv.1910.09126.
[6]   LU S, ZHANG Y, WANG Y. Decentralized federated learning for electronic health records [C]// 2020 54th Annual Conference on Information Sciences and Systems . Princeton: IEEE, 2020: 1−5.
[7]   YU H, JIN R, YANG S. On the linear speedup analysis of communication efficient momentum SGD for distributed non-convex optimization [C]// International Conference on Machine Learning . Long Beach: PMLR, 2019: 7184−7193.
[8]   LAMPORT L, SHOSTAK R, PEASE M. The Byzantine generals problem [M]// Concurrency: the works of leslie lamport . New York: Association for Computing Machinery, 2019: 203−226.
[9]   DAMASKINOS G, GUERRAOUI R, PATRA R, et al. Asynchronous Byzantine machine learning (the case of SGD) [C]// International Conference on Machine Learning . Stockholm: PMLR, 2018: 1145−1154.
[10]   CHEN Y, SU L, XU J Distributed statistical machine learning in adversarial settings: Byzantine gradient descent[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2017, 1 (2): 1- 25
[11]   YIN D, CHEN Y, KANNAN R, et al. Byzantine-robust distributed learning: towards optimal statistical rates [C]// International Conference on Machine Learning . Stockholm: PMLR, 2018: 5650−5659.
[12]   XIE C, KOYEJO O, GUPTA I. Phocas: dimensional byzantine-resilient stochastic gradient descent [EB/OL]. (2018−05−23). https://doi.org/10.48550/arXiv.1805.09682.
[13]   XIE C, KOYEJO O, GUPTA I. Generalized byzantine-tolerant sgd [EB/OL]. (2018−05−23). https://doi.org/10.48550/arXiv.1802.10116.
[14]   BLANCHARD P, EL MHAMDI E M, GUERRAOUI R, et al. Machine learning with adversaries: Byzantine tolerant gradient descent [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems . New York: Curran Associates Inc, 2017: 118−128.
[1] Chong-he LIU,Guan-ding YU,Sheng-li LIU. Hierarchical federated learning based on wireless D2D networks[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 892-899.