Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (12): 2616-2626    DOI: 10.3785/j.issn.1008-973X.2025.12.016
    
Deformation decoupling and parameter inversion for high core wall dams considering mechanical causes
Xiongxiong ZHOU1,2,3(),Qiujiang HE1,2,Jichun HE1,2,Jing ZHOU1,2
1. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Northwest A & F University, Xianyang 712100, China
2. College of Water Resources and Architectural Engineering, Northwest A & F University, Xianyang 712100, China
3. Shaanxi Province Institute of Water Resources and Electric Power Investigation and Design, Xi’an 710000, China
Download: HTML     PDF(2183KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A deformation decoupling and parameter inversion method considering mechanical causes was proposed, to address the difficulties and limited accuracy associated with direct parameter inversion in stress-deformation analysis and safety evaluation of earth-rockfill dams. Settlement monitoring data at the monitoring points on the dam crest were analyzed using a statistical model, whereby the settlement deformation was decoupled into water-level-dependent and time-dependent components, thus enhancing the accuracy of deformation component characterization. An optimization framework combining BP neural networks and genetic algorithms was then established for different components to separately invert the parameters of the wetting and creep models, thereby obtaining key parameters that reflect the actual mechanical behavior of the dam and improving the accuracy of parameter inversion through differentiated analysis. Based on the inverted parameters, finite element analysis was performed to analyze deformation characteristics and crack development of the dam. Results demonstrated that settlement values calculated with the inverted parameters showed close agreement with field monitoring data across the entire crest, with deviations controlled within a reasonable range, verifying the reliability and accuracy of the proposed method. Moreover, the crack patterns derived from the inverted parameters exhibited high consistency with observed conditions. The findings provide a new technical approach for mechanical parameter inversion of earth-rockfill dams.



Key wordshigh core wall rockfill dam      monitoring data decoupling      wetting deformation      creep      parameter inversion     
Received: 06 December 2024      Published: 25 November 2025
CLC:  TP 393  
Fund:  国家自然科学基金资助项目(52209168);陕西省博士后科研资助项目(2023BSHGZZHQYXMZZ14);中央高校基本科研业务费(2452020207).
Cite this article:

Xiongxiong ZHOU,Qiujiang HE,Jichun HE,Jing ZHOU. Deformation decoupling and parameter inversion for high core wall dams considering mechanical causes. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2616-2626.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.12.016     OR     https://www.zjujournals.com/eng/Y2025/V59/I12/2616


考虑力学成因的高心墙坝变形解耦及参数反演

为了解决土石坝应力变形分析和安全评价中直接参数反演难度大且准确性不足的问题,提出考虑力学成因的变形解耦及参数反演方法. 基于统计模型进行坝顶测点监测沉降分析,将沉降变形解耦为水位与时效分量,从而提高变形组分刻画精度;针对不同分量,构建BP神经网络与遗传算法相结合的优化框架,对湿化与流变模型参数分别开展反演,获取能够反映坝体实际力学行为的关键参数,通过差异化反演提高反演参数精度;基于反演所得模型参数进行有限元计算,从而开展大坝变形特性和裂缝分析. 研究表明,利用上述方法反演参数而后计算得到的沉降变形计算值与实际监测值在坝顶整个范围内均较吻合,偏差控制在合理范围,方法可靠性与精度得到验证. 分析得到的坝顶裂缝开裂情况与实际情况较吻合. 研究成果为土石坝力学参数反演提供了新的思路和方法.


关键词: 高心墙堆石坝,  监测数据解耦,  湿化变形,  流变,  参数反演 
Fig.1 Typical cross section of dam
Fig.2 Measuring point layout on dam crest and downstream dam slope
Fig.3 Settlement curve of each measuring point on upstream and downstream side of dam crest
Fig.4 Settlement curve of each measuring point on axis of dam crest
测点${a_1}$$a_2$/10?3$a_3$/10?5$b_1$$b_2$/10?2$b_3$/10?5$c_1$$c_2$RRMSE/cm
TP010.309?3.021.000.566?0.400.7428.525.750.9970.924
TP020.510?5.091.730.926?0.671.4142.445.400.9971.330
TP030.567?4.881.611.217?0.891.9160.005.800.9971.996
TP040.731?7.252.491.450?1.112.5172.975.770.9972.381
TP050.723?7.212.491.472?1.122.5271.146.590.9972.467
TP060.785?9.053.211.227?0.911.9762.576.790.9981.837
TP070.606?6.622.401.074?0.751.5251.487.140.9971.718
TP080.400?4.441.620.567?0.310.4031.936.950.9971.147
TP090.244?2.781.020.288?0.130.0919.017.570.9960.706
LD560.310?2.300.630.620?0.450.9228.703.710.9970.895
LD570.508?3.851.081.098?0.892.1052.646.150.9951.854
LD580.542?4.391.361.277?0.992.2446.373.260.9971.782
LD590.649?5.631.881.451?1.092.4057.784.150.9972.113
LD600.598?5.171.681.268?0.941.9851.613.420.9971.954
LD610.617?5.701.891.165?0.841.7146.923.560.9971.791
LD620.589?5.201.681.039?0.701.3546.854.890.9971.654
LD630.439?4.211.380.569?0.300.3731.935.300.9971.139
TP100.303?2.120.530.582?0.430.9225.973.390.9970.816
TP110.402?2.860.730.785?0.591.2633.803.390.9971.058
TP120.438?2.920.711.022?0.821.8539.342.640.9971.259
TP130.478?3.240.801.205?1.012.4140.112.000.9971.286
TP140.445?3.040.771.148?0.952.2339.362.040.9971.253
TP150.418?3.010.811.013?0.801.8038.862.460.9971.228
TP160.432?3.160.860.834?0.611.2535.513.430.9971.078
TP170.405?3.501.070.561?0.350.6128.074.520.9970.949
Tab.1 Summary of settlement statistical model results of measuring points on dam crest
Fig.5 Settlement statistical model of TP3 and TP4
Fig.6 Settlement statistical model of LD58 and LD59
Fig.7 Settlement statistical model of TP12 and TP13
Fig.8 Three-dimensional finite element model of Pubugou high core rockfill dam
Fig.9 Dam construction and reservoir filling process
参数坝料$\gamma /\left({\mathrm{g}} \cdot {\mathrm{cm}}^{-3}\right)$$K$$n$${R_{\mathrm{f}}}$$ c / {\mathrm{k P a}} $$\varphi_0 /\left(^{\circ}\right)$$\Delta \varphi /\left(^{\circ}\right)$${K_{\mathrm{b}}}$$m$
心墙2.365500.420.760.1235.00.02400.29
反滤2.037900.590.8114.435.50.04000.30
过渡2.159860.360.7411.538.80.05500.32
主堆石2.1010000.520.680.054.010.04200.34
次堆石2.108000.500.700.051.010.03180.30
Tab.2 Main E-B model parameters of Pubugou dam
Fig.10 Flowchart of GA-BP parameter inversion
参数K0m0K1Acd
反演结果0.0180.1790.0621.1080.3030.121
Tab.3 Inversion results of wetting model parameters
Fig.11 Comparison chart of calculated and actual values of wetting deformation
参数坝料αbcdm1m2m3
上游堆石区0.0050.0370.0840.2290.3830.3650.482
下游主堆石区0.0030.0280.0990.3020.3830.3650.482
下游次堆石区0.0040.0750.1000.4590.7970.4550.542
心墙区0.0020.0720.2530.4850.9360.6790.518
Tab.4 Inversion results of creep model parameters
Fig.12 Comparison chart of calculated and actual values for creep deformation
Fig.13 Settlement distribution map for dam section 0+240
Fig.14 Horizontal displacement distribution map for dam section 0+240
Fig.15 Distribution map of major principal stress for dam section 0+240
Fig.16 Distribution map of minor principal stress for dam section 0+240
Fig.17 Surface deformation gradient contour map of dam at time of first crack appearance
Fig.18 Surface deformation gradient contour map of dam on November 23, 2022
[1]   OLDECOP L A, ALONSO E E Theoretical investigation of the time-dependent behaviour of rockfill[J]. Géotechnique, 2007, 57 (3): 289- 301
[2]   SOWERS G F, WILLIAMS R C, WALLACE T S. Compressibility of broken rock and the settlement of rockfills [C]// 6th International Conference on Soil Mechanics and Foundation Engineering. Montreal: [s. n. ], 1965: 561−565.
[3]   MAHINROOSTA R, ALIZADEH A, GATMIRI B Simulation of collapse settlement of first filling in a high rockfill dam[J]. Engineering Geology, 2015, 187: 32- 44
doi: 10.1016/j.enggeo.2014.12.013
[4]   JIA Y, CHI S Back-analysis of soil parameters of the Malutang II concrete face rockfill dam using parallel mutation particle swarm optimization[J]. Computers and Geotechnics, 2015, 65: 87- 96
doi: 10.1016/j.compgeo.2014.11.013
[5]   SHU X, BAO T, LI Y, et al VAE-TALSTM: a temporal attention and variational autoencoder-based long short-term memory framework for dam displacement prediction[J]. Engineering with Computers, 2022, 38 (4): 3497- 3512
doi: 10.1007/s00366-021-01362-2
[6]   ZHU Y, XIE M, ZHANG K, et al A dam deformation residual correction method for high arch dams using phase space reconstruction and an optimized long short-term memory network[J]. Mathematics, 2023, 11 (9): 2010
doi: 10.3390/math11092010
[7]   LI Y, HARIRI-ARDEBILI M A, DENG T, et al A surrogate-assisted stochastic optimization inversion algorithm: parameter identification of dams[J]. Advanced Engineering Informatics, 2023, 55: 101853
doi: 10.1016/j.aei.2022.101853
[8]   TONINI D. Observed behavior of several Italian arch dams [J]. Journal of the Power Division, 1956, 82(6): False.
[9]   陈久宇 应用实测位移资料研究刘家峡重力坝横缝的结构作用[J]. 水利学报, 1982, 13 (12): 12- 20
CHEN Jiuyu An investigation of linking action of transverse joints in Liujiaxia gravity dam by analyzing observed deflection data[J]. Journal of Hydraulic Engineering, 1982, 13 (12): 12- 20
[10]   SALAZAR F, MORÁN R, TOLEDO M Á, et al Data-based models for the prediction of dam behaviour: a review and some methodological considerations[J]. Archives of Computational Methods in Engineering, 2017, 24 (1): 1- 21
doi: 10.1007/s11831-015-9157-9
[11]   CAO E, BAO T, YUAN R, et al Hierarchical prediction of dam deformation based on hybrid temporal network and load-oriented residual correction[J]. Engineering Structures, 2024, 308: 117949
doi: 10.1016/j.engstruct.2024.117949
[12]   JIA Y, CHI S Back-analysis of soil parameters of the Malutang II concrete face rockfill dam using parallel mutation particle swarm optimization[J]. Computers and Geotechnics, 2015, 65: 87- 96
doi: 10.1016/j.compgeo.2014.11.013
[13]   ZHOU W, LI S, MA G, et al Parameters inversion of high central core rockfill dams based on a novel genetic algorithm[J]. Science China Technological Sciences, 2016, 59 (5): 783- 794
doi: 10.1007/s11431-016-6017-2
[14]   康飞, 李俊杰, 许青 堆石坝参数反演的蚁群聚类RBF网络模型[J]. 岩石力学与工程学报, 2009, 28 (Suppl.2): 3639- 3644
KANG Fei, LI Junjie, XU Qing Ant colony clustering radial basis function network model for inverse analysis of rockfill dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (Suppl.2): 3639- 3644
[15]   ZHOU X, SUN X, LI Y, et al Creep parameter inversion for high CFRDs based on improved BP neural network response surface method[J]. Soft Computing, 2022, 26 (18): 9527- 9541
doi: 10.1007/s00500-022-06735-3
[16]   宋子屹. 基于云神经网络的土石坝坝料动力参数反演研究 [D]. 郑州: 华北水利水电大学, 2022.
SONG Ziyi. Inversion study of dynamic parameters of earth and rock dam materials based on cloud neural network [D]. Zhengzhou: North China University of Water Resources and Electric Power, 2022.
[17]   李少林, 王朝晴, 周伟, 等 高心墙堆石坝瞬变-流变参数解耦反分析方法及变形预测[J]. 长江科学院院报, 2018, 35 (9): 86- 91
LI Shaolin, WANG Zhaoqing, ZHOU Wei, et al Decoupling inversion of instantaneous and rheological parameters and deformation prediction of high core-wall rockfill dam[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35 (9): 86- 91
[18]   杨荷, 周伟, 马刚, 等 基于响应面法的高堆石坝瞬变-流变参数反演方法[J]. 岩土力学, 2016, 37 (6): 1697- 1705
YANG He, ZHOU Wei, MA Gang, et al Inversion of instantaneous and rheological parameters of high rockfill dams based on response surface method[J]. Rock and Soil Mechanics, 2016, 37 (6): 1697- 1705
[19]   柯虎 高心墙堆石坝蓄水变形和裂缝机理分析[J]. 水电与新能源, 2020, 34 (1): 44- 51
KE Hu Analysis of the impoundment deformation and cracking mechanism of a high core wall rockfill dam[J]. Hydropower and New Energy, 2020, 34 (1): 44- 51
[20]   CHEN C, LU X, LI J, et al A novel settlement forecasting model for rockfill dams based on physical causes[J]. Bulletin of Engineering Geology and the Environment, 2021, 80 (10): 7973- 7988
doi: 10.1007/s10064-021-02403-2
[21]   吴中如, 陈继禹. 大坝原型观测资料分析方法和模型 [J]. 河海大学科技情报, 1989, 9(2): 48–52, 54–64.
WU Zhongru, CHEN Jiyu. Analysis method and model of dam prototype observation data [J]. Advances in Science and Technology of Water Resources, 1989, 9(2): 48–52, 54–64.
[22]   刘正云, 顾冲时 探讨较优的土石坝变形时效模型[J]. 长江科学院院报, 2002, 19 (1): 21- 24
LIU Zhengyun, GU Chongshi Probe into relatively better time-effect model of earth-rock dam’s deformation[J]. Journal of Yangtze River Scientific Research Institute, 2002, 19 (1): 21- 24
[23]   张艺. 基于观测资料的土石坝后期变形研究 [D]. 大连: 大连理工大学, 2019.
ZHANG Yi. Research on the later deformation of earth-rock dam based on observation data [D]. Dalian: Dalian University of Technology, 2019.
[24]   李国英, 米占宽, 傅华, 等 混凝土面板堆石坝堆石料流变特性试验研究[J]. 岩土力学, 2004, 25 (11): 1712- 1716
LI Guoying, MI Zhankuan, FU Hua, et al Experimental studies on rheological behaviors for rockfills in concrete faced rockfill dam[J]. Rock and Soil Mechanics, 2004, 25 (11): 1712- 1716
[25]   沈珠江, 赵魁芝 堆石坝流变变形的反馈分析[J]. 水利学报, 1998, 29 (6): 1- 6
SHEN Zhujiang, ZHAO Kuizhi Back analysis of creep deformation of rockfill dams[J]. Journal of Hydraulic Engineering, 1998, 29 (6): 1- 6
[26]   DUNCAN J M, CHANG C Y Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96 (5): 1629- 1653
doi: 10.1061/JSFEAQ.0001458
[27]   周雄雄. 高心墙堆石坝湿化变形与数值模拟方法研究 [D]. 大连: 大连理工大学, 2020.
ZHOU Xiongxiong. Study on the wetting deformation and the numerical simulation method of HCRFD [D]. Dalian: Dalian University of Technology, 2020.
[28]   郭德全, 严军, 杨兴国, 等 瀑布沟高土石坝三维非线性有限元分析[J]. 人民黄河, 2014, 36 (5): 93- 95
GUO Dequan, YAN Jun, YANG Xingguo, et al The 3-D nonlinear FEM analysis of pubugou high rockfill dam[J]. Yellow River, 2014, 36 (5): 93- 95
[29]   庄文宇, 张如九, 徐建军, 等 基于IAGA-BP算法的高拱坝-坝基力学参数反演分析[J]. 清华大学学报: 自然科学版, 2022, 62 (8): 1302- 1313
ZHUANG Wenyu, ZHANG Rujiu, XU Jianjun, et al Inversion analysis to determine the mechanical parameters of a high arch dam and its foundation based on an IAGA-BP algorithm[J]. Journal of Tsinghua University: Science and Technology, 2022, 62 (8): 1302- 1313
[30]   叶晓峰, 周伟, 马刚, 等 基于反演参数的心墙堆石坝坝顶裂缝成因研究[J]. 武汉大学学报: 工学版, 2022, 55 (3): 220- 228
YE Xiaofeng, ZHOU Wei, MA Gang, et al Study on the cause of crest cracking of earth-core rockfill dam based on inversion parameters[J]. Engineering Journal of Wuhan University, 2022, 55 (3): 220- 228
[31]   江金龙. 改进遗传算法及其在波束形成中的应用 [D]. 南京: 河海大学, 2005.
JIANG Jinlong. Improved genetic algorithm with application to beam-forming for smart antenna [D]. Nanjing: Hohai University, 2005.
[32]   CHICCO D, WARRENS M J, JURMAN G The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation[J]. PeerJ Computer Science, 2021, 7: e623
doi: 10.7717/peerj-cs.623
[33]   刘祖德 土石坝变形计算的若干问题[J]. 岩土工程学报, 1983, 5 (1): 1- 13
LIU Zude Some problems about the calculation of deformation of earth-rock dams[J]. Chinese Journal of Geotechnical Engineering, 1983, 5 (1): 1- 13
[34]   张雯昕. 考虑不确定性的土石坝湿化变形参数反演研究 [D]. 郑州: 华北水利水电大学, 2020.
ZHANG Wenxin. Research on back analysis of wet deformation parameters of earth-rock dam considering uncertainty [D]. Zhengzhou: North China University of Water Resources and Electric Power, 2022.
[35]   程欣悦, 马刚, 张贵科, 等 考虑监测数据时序特征和空间分布的堆石坝参数反演研究[J]. 水力发电学报, 2024, 43 (5): 54- 67
CHENG Xinyue, MA Gang, ZHANG Guike, et al Study on parameter inversion of rockfill dams considering time series features and spatial distribution of monitoring data[J]. Journal of Hydroelectric Engineering, 2024, 43 (5): 54- 67
[36]   朱晟, 路德任 基于改进粒子群算法的面板堆石坝流变反演分析[J]. 岩石力学与工程学报, 2022, 41 (Suppl.1): 2971- 2978
ZHU Sheng, LU Deren Rheological inversion analysis of CFRD based on improved particle swarm optimization algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41 (Suppl.1): 2971- 2978
[1] Taotao HU,Shaojun HE,Dong WANG. Creep damage intrinsic model of carbonaceous slate considering laminar inclination[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1704-1716.
[2] Yifei LUO,Bin HU,Xin ZHAO,Zefeng WEN. Rolling contact and wear characteristics simulation analysis of scaled wheel-ring rail[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1275-1284.
[3] Qin-ling ZHANG,Zhi-yi HUANG. High temperature properties of SBS modified asphalt mastics in high temperature and high humidity salt environment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 38-45.
[4] Shi-wei LI,Yong-qing YANG,Qian-hui PU,Bo SUN. Nonlinear creep effect analysis for short concrete-filled circular steel tubular columns under axial compression[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1083-1091.
[5] WANG Yong-bao, ZHAO Ren-da, WU De-bao. Time-dependent behavior of concrete-filled steel tube considering initial stress and bond-slip effect[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2306-2313.
[6] LUO Yue, YE Shu-jun, WU Ji-chun, ZHANG Yan-hong, JIAO Xun, WANG Han-mei. Global sensitivity analysis of parameters in land subsidence model[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 2007-2013.
[7] KANG Zhi-jun, HUANG Run-qiu, WEI Bin, TAN Yong. Deformation behaviors of deep top-down metro excavation in Shanghai soft clay[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1527-1536.
[8] XIANG Yi-qiang, HE Chao-chao, QIU Zheng. Calculation of long-term slippage for externally prestressing steel-concrete composite beam[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 739-744.
[9] HU Ya-yuan. Approximately determining preloading duration considering creep[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 250-256.
[10] HU Ya-yuan, JIANG Tao. Impact of secondary consolidation coefficient on consolidation
characteristics of quasi over-consolidated clay
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(6): 1088-1093.
[11] LIU Fu-jun, KONG Shuai, LING Zhang-wei, ZHENG Mu-lin, QIAN Yue-qiang,JIN Nan-hui. Assessment methodology of power station boiler superheater based on
risk-based inspection technology
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(10): 1791-1798.
[12] HU Ya-yuan. Settlement of soft ground induced by cycle load considering
secondary settlement
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 106-111.
[13] HU E-Yuan. Settlement standard of unloading time for preloading method with
an eye to pre-consolidation time
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(8): 1615-1620.
[14] HU E-Yuan. Method of determining duration of stage constructed surcharge
preloading with a view to second settlement
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(5): 962-968.