Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (8): 1704-1716    DOI: 10.3785/j.issn.1008-973X.2024.08.017
    
Creep damage intrinsic model of carbonaceous slate considering laminar inclination
Taotao HU1(),Shaojun HE1,Dong WANG2
1. School of Highway, Chang'an University, Xi'an 710064, China
2. School of Energy and Architectural Engineering, Shandong Huayu Institute of Technology, Dezhou 253034, China
Download: HTML     PDF(2035KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Carbonaceous slate was taken as the research object and creep mechanical tests were conducted on carbonaceous slate with different bedding dip angles in response to the anisotropic characteristics of layered rock masses. An improved Nishihara nonlinear damage creep constitutive model that can describe the accelerated creep of carbonaceous slate with different bedding angles was established based on the creep test results. The one-dimensional and three-dimensional constitutive equations of the model were derived. Results show that there is a significant stress threshold in the creep process of carbonaceous slate. Only attenuation creep occurs in carbonaceous slate when the stress level is less than the threshold. Steady-state creep begins to occur when the stress level reaches or exceeds the threshold. The carbonaceous slate undergoes accelerated creep and creep failure when the stress level reaches or exceeds the failure stress. The inversion identification results of model parameters indicate that the improved Nishihara creep model can effectively describe the entire creep process of carbonaceous slate. The relationship between model parameters and confining pressure and bedding angle was discussed based on the parameter identification results. The relationship between damage parameter c and layer inclination angle was obtained. The effects of damage parameter d and viscosity coefficient to accelerate creep stage were analyzed.



Key wordscarbonaceous slate      laminar inclination      creep characteristic      constitutive model      parameter identification     
Received: 07 December 2023      Published: 23 July 2024
CLC:  TP 393  
Fund:  国家自然科学基金资助项目(52378388);长安大学中央高校基本科研业务费专项资金资助项目(300102213211).
Cite this article:

Taotao HU,Shaojun HE,Dong WANG. Creep damage intrinsic model of carbonaceous slate considering laminar inclination. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1704-1716.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.08.017     OR     https://www.zjujournals.com/eng/Y2024/V58/I8/1704


考虑层理倾角的炭质板岩蠕变损伤本构模型

针对层状岩体的各向异性特征,以炭质板岩为研究对象,开展不同层理倾角炭质板岩的蠕变力学试验. 基于蠕变试验结果,建立可以描述不同层理倾角炭质板岩加速蠕变的改进Nishihara非线性损伤蠕变本构模型,推导该模型的一维、三维本构方程. 研究结果表明,炭质板岩的蠕变过程存在明显的应力阈值. 当应力小于阈值时,炭质板岩只发生衰减蠕变;当应力达到或大于阈值时,开始发生稳态蠕变;当应力达到或超过破坏应力时,炭质板岩发生加速蠕变并发生蠕变破坏. 模型参数反演辨识结果表明,改进Nishihara蠕变模型能够很好地描述炭质板岩的整个蠕变过程. 基于参数辨识结果,对模型参数与围压和层理倾角的关系进行探讨,得到损伤参数c与层理倾角的关系式,分析损伤参数d与黏滞系数对加速蠕变阶段的影响.


关键词: 炭质板岩,  层理倾角,  蠕变特性,  本构模型,  参数辨识 
Fig.1 Failure images of specimen with different bedding angle
θ/(°)p/MPaσt/MPa
第1级第2级第3级第4级第5级
051224364860
0101326395265
0151428425670
4510510151924
4515613192531
90101223354759
90151427415468
Tab.1 Graded loading creep test scheme for carbonaceous shale with different bedding angles
Fig.2 Graded loading creep curve of 0° stratigraphic dip carbonaceous slate
Fig.3 Graded loading creep curve of 45° stratigraphic dip carbonaceous slate
Fig.4 Graded loading creep curve of 90° stratigraphic dip carbonaceous slate
Fig.5 Elastoplastic layered damage element
Fig.6 Viscous damage element
Fig.7 Improved Nishihara nonlinear viscoelastic plastic creep model
Fig.8 Schematic diagram of Nishihara model
Fig.9 Traditional and improved Nishihara creep model fitting curves
p/MPaSij/MPaE1/GPaE2/GPaη1/(GPa·h)η2/(GPa·h)η3/(GPa·h)cdR2
51220.03149.57206.070.9996
2420.08154.47211.190.9966
3619.32222.34227.363580.580.9953
4818.75253.63311.7011902.830.9971
6018.31246.96174.45109.773.603 2×1050.00235.030.9997
101321.25188.53186.020.9854
2621.49187.59247.630.9909
3920.81273.81464.564284.290.9945
5220.36340.45226.5416819.230.9997
6519.99329.98174.83144.3833541.080.00862.220.9985
151421.89205.91312.290.9955
2822.41209.95329.290.9969
4222.31264.51661.2312515.250.9987
5620.98225.25564.5815635.210.9946
7020.12482.04356.82144.7031182.070.00371.740.9946
Tab.2 Parameter of improved Nishihara creep model for carbonaceous slate with 0° laminar dip
p/MPaSij/MPaE1/GPaE2/GPaη1/(GPa·h)η2/(GPa·h)η3/(GPa·h)cdR2
1055.99123.77224.560.9987
107.6383.12176.430.9932
158.29201.24135.851241.020.9996
198.19143.2966.0112.083182.850.0115.670.9981
1567.0596.64117.560.9991
1310.22190.94393.470.9973
1911.67373.81222.532517.730.9992
2512.37183.29186.1455.313464.380.00952.220.9967
Tab.3 Parameter of improved Nishihara creep model for carbonaceous slate with 45° laminar dip
p/MPaSij/MPaE1/GPaE2/GPaη1/(GPa·h)η2/(GPa·h)η3/(GPa·h)cdR2
101212.98136.51259.460.9968
2314.46155.12201.050.9982
3515.08202.90254.324438.780.9959
4715.23580.14225.9335.996679.860.01082.240.9981
151413.70323.48550.760.9947
2715.87276.99159.380.9978
4116.82367.70507.975322.290.9993
5417.09769.91525.6968.5722744.760.001035.310.9997
Tab.4 Parameter of improved Nishihara creep model for carbonaceous slate with 90° laminar dip
Fig.10 Change rule of damage parameter d with laminar inclination
Fig.11 Change rule of damage parameter d with peripheral pressure
Fig.12 Change rule of damage parameter c with laminar inclination angle
Fig.13 Change rule of damage parameter c with perimeter pressurization
Fig.14 Relationship between parameter of improved Nishihara creep model and confining pressure
Fig.15 Relationship between parameter of improved Nishihara creep model and bedding dip angle
Fig.16 Effect of damage parameter d on accelerated creep
Fig.17 Effect of creep rate η3 on accelerated creep
[1]   赵勐, 肖明, 陈俊涛, 等 考虑互层状岩体接触状态的地下洞室围岩稳定分析[J]. 东北大学学报: 自然科学版, 2022, 43 (2): 243- 250
ZHAO Meng, XIAO Ming, CHEN Juntao, et al Stability analysis of underground cavern surrounding rock considering the contact state of interlayered rock body[J]. Journal of Northeastern University: Natural Science, 2022, 43 (2): 243- 250
[2]   朱秋雷. 千枚岩强度参数各向异性及对隧道围岩大变形的影响[D]. 成都: 成都理工大学, 2019.
ZHU Qiulei. Anisotropy of strength parameters of thousand rocks and their influence on large deformation of surrounding rock of tunnel [D]. Chengdu: Chengdu University of Technology, 2019.
[3]   魏心声. 秦巴山区云母石英片岩蠕变力学特性研究[D]. 西安: 长安大学, 2015.
WEI Xinsheng. Study on creep mechanical properties of mica quartz schist in Qinba Mountain [D]. Xi’an: Chang’an University, 2015.
[4]   XU Huichen, ZHANG Yong, ZHAO Chengwei, et al Creep structure effect of layered rock mass based on acoustic emission characteristics[J]. Shock and Vibration, 2021, 2021: 1- 14
[5]   范庆忠, 高延法 分级加载条件下岩石流变特性的试验研究[J]. 岩土工程学报, 2005, 27 (11): 4
FAN Qingzhong, GAO Yanfa Experimental study of rock rheological properties under graded loading conditions[J]. Chinese Journal of Geotechnical Engineering, 2005, 27 (11): 4
[6]   李永盛 单轴压缩条件下四种岩石的蠕变和松弛试验研究[J]. 岩石力学与工程学报, 1995, 14 (1): 9
LI Yongsheng Experimental study on creep and relaxation of four rocks under uniaxial compression conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 1995, 14 (1): 9
[7]   徐卫亚, 黄威, 张涛, 等 含软弱夹层的层状岩体流变力学特性试验[J]. 河海大学学报: 自然科学版, 2020, 48 (4): 7
XU Weiya, HUANG Wei, ZHANG Tao, et al Test of rheological mechanical properties of layered rock mass with soft interbed[J]. Journal of Hohai University: Natural Sciences, 2020, 48 (4): 7
[8]   胡涛涛, 康志斌, 陈建勋, 等 含软弱夹层炭质板岩单轴压缩力学行为模拟研究[J]. 应用力学学报, 2021, 38 (4): 1580- 1587
HU Taotao, KANG Zhibin, CHEN Jianxun, et al Simulation study on uniaxial compressive mechanical behavior of carbonaceous slate with weak interbed[J]. Chinese Journal of Applied Mechanics, 2021, 38 (4): 1580- 1587
[9]   周晓飞, 孙金山, 刘贵应, 等 基于幂函数的边坡岩体泥质夹层长期强度直剪蠕变试验研究[J]. 安全与环境工程, 2018, 25 (1): 6- 11
ZHOU Xiaofei, SUN Jinshan, LIU Guiying, et al Experimental study on long-term strength direct shear creep of argillaceous interlayer of slope rock mass based on power function[J]. Safety and Environmental Engineering, 2018, 25 (1): 6- 11
[10]   LI Maotong, LI Kesheng, ZHANG Deng, et al Study on creep characteristics and constitutive relation of fractured rock mass[J]. Shock and Vibration, 2020, 2020: 1- 14
[11]   宋洋, 李永启, 王韦颐, 等 加锚节理岩体剪切蠕变特性及其本构模型分析[J]. 煤炭学报, 2020, 45 (4): 10
SONG Yang, LI Yongqi, WANG Weiyi, et al Shear creep characteristics of anchored joint rock mass and its constitutive model analysis[J]. Journal of China Coal Society, 2020, 45 (4): 10
[12]   赵晨阳, 雷明锋, 贾朝军, 等 含软弱结构面岩体蠕变力学模型[J]. 中南大学学报: 自然科学版, 2021, 52 (10): 3541- 3549
ZHAO Chenyang, LEI Mingfeng, JIA Chaojun, et al Creep mechanical model of rock mass with soft structural surface[J]. Journal of Central South University: Science and Technology, 2021, 52 (10): 3541- 3549
[13]   TRZECIAK M, SONE H, DABROWSKI M Long-term creep tests and viscoelastic constitutive modeling of lower paleozoic shales from the baltic basin, N poland[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 139- 157
doi: 10.1016/j.ijrmms.2018.10.013
[14]   LV S, WANG W, LIU H A creep damage constitutive model for a rock mass with nonpersistent joints under uniaxial compression[J]. Mathematical Problems in Engineering, 2019, 2019: 1- 11
[15]   TIAN Y, CHEN W Z, TIAN H M Analytical model of layered rock considering its time-dependent behaviour[J]. Rock Mechanics and Rock Engineering, 2021, 54 (11): 5937- 5944
doi: 10.1007/s00603-021-02421-2
[16]   张向东, 傅强 冻土三轴蠕变特性试验研究及平面冻土墙厚度的确定[J]. 岩土力学, 2011, 32 (8): 6
ZHANG Xiangdong, FU Qiang Experimental study on triaxial creep characteristics of frozen soil and determination of thickness of flat frozen soil wall[J]. Rock and Soil Mechanics, 2011, 32 (8): 6
[17]   周传涛, 田文岭, 甄治国, 等 含不同层理倾角黄砂岩损伤破裂机理研究[J]. 实验技术与管理, 2023, 40 (3): 26- 31
ZHOU Chuantao, TIAN Wenling, ZHEN Zhiguo, et al Study on the damage and rupture mechanism of yellow sandstone with different laminar dip angles[J]. Experimental Technology and Management, 2023, 40 (3): 26- 31
[18]   刘开云, 薛永涛, 周辉 基于改进Bingham模型的软岩参数非定常三维非线性黏弹塑性蠕变本构研究[J]. 岩土力学, 2018, 39 (11): 4157- 4164
LIU Kaiyun, XUE Yongtao, ZHOU Hui Research on unsteady three-dimensional nonlinear viscoelastic plastic creep constitutive behavior of soft rock parameters based on improved Bingham model[J]. Rock and Soil Mechanics, 2018, 39 (11): 4157- 4164
[19]   HE Zhilei, ZHU Zhende, NI Xiaohui, et al Shear creep tests and creep constitutive model of marble with structural plane[J]. European Journal of Environmental and Civil Engineering, 2017, 23 (11): 1275- 1293
[20]   刘天毅. 高温后层状砂岩各向异性蠕变特性及本构模型研究[D]. 成都: 成都理工大学, 2017.
LIU Tianyi. Study on anisotropic creep characteristics and constitutive model of layered sandstone after high temperature [D]. Chengdu: Chengdu University of Technology, 2017.
[21]   谢云鹏. 化学侵蚀环境下不同层理倾角的深部炭质板岩蠕变特性研究[D]. 湘潭: 湖南科技大学, 2021.
XIE Yunpeng. Study on creep characteristics of deep carbonaceous slate at different strata inclination angles under chemical erosion environment [D]. Xiangtan: Hunan University of Science and Technology, 2021.
[22]   杨俊涛, 宋彦琦, 马宏发, 等 考虑硬化和损伤效应的盐岩蠕变本构模型研究[J]. 岩土力学, 2023, 44 (10): 2953- 2966
YANG Juntao, SONG Yanqi, MA Hongfa, et al Research on creep constitutive model of salt rock considering hardening and damage effects[J]. Rock and Soil Mechanics, 2023, 44 (10): 2953- 2966
[23]   张志强, 朱星宇, 刘新华 橄榄岩蠕变特性及本构模型研究[J]. 岩石力学与工程学报, 2022, 41 (8): 1525- 1535
ZHANG Zhiqiang, ZHU Xingyu, LIU Xinhua Study on creep characteristics and constitutive models of peridotite[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41 (8): 1525- 1535
[24]   张亮亮, 王晓健 岩石黏弹塑性损伤蠕变模型研究[J]. 岩土工程学报, 2020, 42 (6): 1085- 1092
ZHANG Liangliang, WANG Xiaojian Research on creep model of rock viscoelastic plastic damage[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (6): 1085- 1092
[1] Ming XU,Di ZHANG,Cheng RONG,Li-rong SU,Wan-qiang WANG. Modified Bouc-Wen based hysteresis modeling of flexible joint actuator[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1560-1567, 1621.
[2] Shao-xiang CHEN,Zhi-gang CAO,Xing-chi YE,Yuan-qiang CAI,Qi ZHANG. Hypoplastic model for road base coarse-grained materials accounting for temperature effect[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 938-946, 976.
[3] Hui WANG, Xiao-lin HUAN, Yu-qi CHEN, Bo ZHOU, Shi-feng XUE, Ying-song LIN. Macro-mesoscopic Duncan-Chang damage model for hydrate-bearing sediments considering coupling effect of temperature-pore pressure condition[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1734-1743.
[4] Jia-qi JIANG,Ri-qing XU,Zhi-jian QIU,Xiao-bo ZHAN,Yue WANG,Guang-mou CHENG. Egg-shaped elasto-plastic constitutive modeling for over-consolidated clay[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1444-1452.
[5] Tie ZHANG,Liang-liang HU,Yan-biao ZOU. Identification of improved friction model for robot based on hybrid genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 801-809.
[6] Lei XIE,Qing-hua LI,Shi-lang XU. Dynamic compressive properties and constitutive model of reactive powder concrete[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 999-1009.
[7] Jing ZHANG,Dao-qin ZOU,Hai-long WANG,Xiao-yan SUN. Bond tensile performance and constitutive models of interfaces between vertical and horizontal filaments of 3D printed concrete[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2178-2185.
[8] Qing-hua LI,Cheng-lan-qing SHU. Experimental study on stress wave propagation in ultra high toughness cementitious composites[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 851-857.
[9] Teng-yi HUANG,Jin ZHOU,Yan XU,Fan-xu MENG. Modeling of MR damper based on multi-field coupling analysis and influence of structural parameters[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2001-2008.
[10] FAN Peng-xuan, CHEN Wu-jun, ZHAO Bing, HU Jian-hui, ZHANG Da-xu, FANG Guang-qiang, PENG Fu-jun. Finite strain viscoelastic model of shape memory polymer in Prony series form[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1194-1200.
[11] LEI Yan-yun, XIE Xu. Improved method of Giuffre-Menegotto-Pinto hysteretic constitutive model[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1926-1934.
[12] WANG Hai-long, LING Jia-yan, SUN Xiao-yan, LI Xiao-bin. Performance of stainless steel reinforced concrete column under small eccentric compression[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1919-1925.
[13] PAN Li, BAO Guan-jun, XU Fang, ZHANG Li-bin. Dynamic compliant control of six DOF assembly robot[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 125-132.
[14] KE Han, DONG Ding, CHEN Yun-min, GUO Cheng, FENG Shi-jin. Nonlinear elastic model for municipal solid waste considering dilatancy effect[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2158-2164.
[15] WANG Kai, YAO Wen-xi, LV Zheng-yu. Self-commissioning algorithm for induction machine based on direct current biased excitation[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1382-1387.