Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (12): 2604-2615    DOI: 10.3785/j.issn.1008-973X.2025.12.015
    
Flexural and fatigue performance of emergency steel-concrete composite beams with medium and short spans
Lifeng LI1,2(),Liwei HUANG1,Jianbao MIAO3,Xiongwei SHI3
1. School of Civil Engineering, Hunan University, Changsha 410082, China
2. Key Laboratory of Wind Engineering and Bridge Engineering, Hunan University, Changsha 410082, China
3. Xi’an Highway Research Institute, Xi’an 710054, China
Download: HTML     PDF(2840KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel prefabricated steel-concrete composite beam emergency system characterized by modular processing, fabrication, and installation was proposed to address the frequent damage of bridge superstructures under extreme disasters and the urgent need for rapid repair or replacement to ensure immediate restoration of critical transportation lines. The system integrates steel beams and concrete deck slabs prefabricated as separate blocks, connected via high-strength bolted shear connectors post-installed between steel beams, steel-concrete interfaces, and adjacent deck slabs. To validate the feasibility and mechanical performance of this emergency system, two 1:2.5-scaled static model tests and fatigue model tests (followed by static failure tests) were designed and conducted. Static failure tests revealed that the ultimate load of the system significantly exceeded the required bearing capacity, with structural stiffness meeting specifications. Prefabricated components exhibited excellent composite interaction and coordinated performance, where high-strength bolted connectors effectively constrained separation and transferred interlayer shear. However, interfacial slippage increased markedly (with a maximum slippage of 1.121 mm) when loads surpassed 1.2 times the factored bearing capacity. Comparative analysis with existing formulas for flexural capacity of prefabricated composite beams indicated that the modified plastic method provided accurate predictions. Fatigue tests demonstrated a 6.65% loss in bolt preload and a 13.7% reduction in overall stiffness after 2 million loading cycles. These results confirm the structural feasibility and satisfactory performance of the proposed emergency system for rapid bridge rehabilitation.



Key wordsemergency repair system      precast assembled steel-concrete composite beam      scaled model test      new structural system      flexural capacity     
Received: 29 November 2024      Published: 25 November 2025
CLC:  U 443.35  
Fund:  国家自然科学基金资助项目(52278176);湖南省交通运输厅科技计划(202310).
Cite this article:

Lifeng LI,Liwei HUANG,Jianbao MIAO,Xiongwei SHI. Flexural and fatigue performance of emergency steel-concrete composite beams with medium and short spans. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2604-2615.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.12.015     OR     https://www.zjujournals.com/eng/Y2025/V59/I12/2604


中小跨径应急钢混组合梁抗弯及疲劳性能

极端灾变导致桥梁损坏频繁发生,为了迅速响应桥梁上部结构损坏后的抢修或更换,确保关键交通线路的即时恢复,提出具有模块化加工、制作和安装特点的新型预制钢-混组合梁应急体系结构,即将钢梁、混凝土桥面板分块并各自制作和储存,钢梁之间、钢梁与桥面板之间、桥面板之间均采用高强螺栓后装式剪切连接器进行连接. 为了验证该应急体系的可行性并把握其力学性能,设计并完成了2片1∶2.5缩尺静力模型试验、疲劳模型试验(之后进行静力破坏试验). 静力破坏试验结果表明:该应急体系极限荷载远大于承载能力要求,结构刚度满足要求,各预制构件的组合作用和协调工作性能较好,高强螺栓连接件能够有效地约束预制构件的分离,并能较好地传递层间剪力,但当荷载超过1.2倍承载能力组合值后,板件间最大滑移量为1.121 mm. 综合目前常用的预制装配式组合梁的抗弯承载力计算公式进行对比分析,发现修正塑性法能够较好地预测其承载能力. 疲劳试验结果表明,在200万次疲劳加载后,高强螺栓预紧力损失6.65%,整体刚度下降13.7%. 以上结果证明该应急钢-混组合梁抢修体系的结构可行性,其性能满足应急抢险要求.


关键词: 应急抢修体系,  预制拼装钢混组合梁,  缩尺试验,  新型结构,  抗弯承载力 
Fig.1 30-meter span steel-concrete emergency repair system
Fig.2 Model schematic diagram
钢板t1/mmtw/mmt2/mmd/mmts/mmL/mm
A段梁861262063200
B段梁4000
Tab.1 Steel beam component parameter
工况P/kNσm/MPaσc/MPa
1)注:括号内数据为该组合下实桥对应的应力
频遇组合230117.5(118.5)1)114.0(104.6)
基本组合359181.3(181.3)160.8(158.5)
Tab.2 Load cases
Fig.3 Model making and installation
Fig.4 JL beam loading diagram
Fig.5 PL beam loading diagram
Fig.6 Layout of deflection and slip measurement points
截面位置$ {P_{\text{u}}} $/kN$ {P_{\text{h}}} $/kN$ {P_{\text{y}}} $/kN$ {\delta _{\text{y}}} $/mm$ {\delta _{\text{u}}} $/mm$ {P_{\text{u}}}/{P_{\text{h}}} $$ {\delta _{\text{u}}}/{\delta _{\text{y}}} $
1)注:括号内数据为PL梁疲劳试验后,进行全过程静载破坏试验得到的实测数据
跨中截面900.6423.6723.217.4876.482.124.38
连接截面(886.0)1)(404.9)(720.2)19.092.182.124.85
Tab.3 Primary test results
Fig.7 Failure phenomena of beams in static load tests
Fig.8 Load-displacement curves of two test beams
Fig.9 Vertical deflection curves under different loads
Fig.10 Load-slip curve of bridge slab
Fig.11 Distribution of slab slip along beam length under different loads
Fig.12 Load-opening curve at steel beam connection
Fig.13 Strain distribution of cross-section along height under different loads
Fig.14 Longitudinal strain of bridge slab concrete
Fig.15 Load-opening curves of adjacent bridge decks
Fig.16 Stiffness degradation under fatigue effect
Fig.17 Variation of bolt preload under fatigue effect
破坏阶段计算$ {F_{\mathrm{e}}} $/kN$ {F_{\mathrm{u}}} $/kN$ {F_{\mathrm{e}}}/{F_{\mathrm{u}}} $
1)注:括号内数据为PL梁疲劳试验后,进行全过程静载破坏试验得到的实测数据
塑性设计公式[12]903.2900.6(886.0)1)1.003(1.019)
修正塑性法[22]870.40.967(0.982)
聂建国部分抗剪[23]871.80.966(0.984)
Johnson插值法[24]848.80.942(0.958)
李龙插值法[25]831.50.923(0.938)
Tab.4 Ultimate load capacity calculation results
[1]   黄植初, 孔维友, 张庆海 “平战结合” 的结晶: 铁路拆装式桁梁[J]. 国防交通工程与技术, 2004, 2 (4): 49- 50
HUANG Zhichu, KONG Weiyou, ZHANG Qinghai Fruit of the combination of preparedness against war with peacetime use: assembled truss beams for railways[J]. Traffic Engineering and Technology for National Defence, 2004, 2 (4): 49- 50
[2]   张增勤. 铁路桥梁抢修技术研究 [EB/OL]. (2008−12−01) [2025−02−10]. http://www.example.com/path/to/document.pdf.
[3]   项贻强, 竺盛, 赵阳 快速施工桥梁的研究进展[J]. 中国公路学报, 2018, 31 (12): 1- 27
XIANG Yiqiang, ZHU Sheng, ZHAO Yang Research and development on accelerated bridge construction technology[J]. China Journal of Highway and Transport, 2018, 31 (12): 1- 27
[4]   柯亮亮, 苗建宝, 刘颜滔 应急抢修单梁置换钢混组合结构研究[J]. 科技创新与应用, 2023, 13 (23): 156- 159
KE Liangliang, MIAO Jianbao, LIU Yantao Research on emergency repair of single beam replacement of steel-concrete composite structure[J]. Technology Innovation and Application, 2023, 13 (23): 156- 159
[5]   焦燏烽, 张店, 刘丰军, 等 预应力装配式梁-梁拼接节点受力性能研究[J]. 钢结构, 2016, 31 (12): 64- 68
JIAO Yufeng, ZHANG Dian, LIU Fengjun, et al Mechanical performance of prestressed beam-to-beam spliced connection for prefabricated steel structure[J]. Steel Construction, 2016, 31 (12): 64- 68
[6]   BALKOS K D, SJAARDA M, WEST J S, et al Static and fatigue tests of steel-precast composite beam specimens with through-bolt shear connectors[J]. Journal of Bridge Engineering, 2019, 24 (5): 04019036
doi: 10.1061/(ASCE)BE.1943-5592.0001382
[7]   刘冰洁. 钢接缝桥面板全装配式组合梁正弯矩力学行为研究 [D]. 重庆: 重庆交通大学, 2023.
LIU Bingjie. Research on the positive bending moment mechanical behavior of fully assembled composite beams with steel joint bridge decks [D]. Chongqing: Chongqing Jiaotong University, 2023.
[8]   程帅奇. 铁路中等跨度抢修钢梁疲劳性能研究 [D]. 石家庄: 石家庄铁道大学, 2017.
CHENG Shuaqi. Study on fatigue performance of medium span emergency repair steel beam for railway [D]. Shijiazhuang: Shijiazhuang Tiedao University, 2017.
[9]   谢荣添. 分段预制混凝土板组合梁抗弯性能研究 [D]. 南宁: 广西大学, 2023.
XIE Rongtian. Study on flexural behaviors of composite beams with segmented precast concrete slabs [D]. Nanning: Guangxi University, 2023.
[10]   WANG X D, SHEN M H, CHUNG K F, et al Experimental investigation into high strength bolted shear connections for simple on-site assembly of composite beams[J]. Engineering Structures, 2022, 257: 113980
doi: 10.1016/j.engstruct.2022.113980
[11]   WANG X, FENG L, SHU R, et al Flexural behavior of high-strength steel-precast prestressed concrete composite beams with grouped demountable bolts under hogging moment[J]. Engineering Structures, 2024, 319: 118849
doi: 10.1016/j.engstruct.2024.118849
[12]   中华人民共和国住房和城乡建设部. 钢结构高强度螺栓连接技术规程: JGJ 82—2011 [S]. 北京: 中国建筑工业出版社, 2011.
[13]   中华人民共和国住房和城乡建设部. 钢-混凝土组合桥梁设计规范: GB 50917—2013 [S]. 北京: 中国建筑工业出版社, 2014.
[14]   中华人民共和国交通运输部. 公路钢结构桥梁设计规范: JTG D64—2015 [S]. 北京: 人民交通出版社, 2015.
[15]   中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019 [S]. 北京: 中国建筑工业出版社, 2019.
[16]   蔺钊飞, 刘玉擎, 贺君 焊钉连接件抗剪刚度计算方法研究[J]. 工程力学, 2014, 31 (7): 85- 90
LIN Zhaofei, LIU Yuqing, HE Jun Research on calculation method of shear stiffness for headed stud connectors[J]. Engineering Mechanics, 2014, 31 (7): 85- 90
[17]   张凡. 装配式钢-UHPC组合梁的新型螺栓剪力连接件的抗剪性能研究 [D]. 广州: 广州大学, 2023.
ZHANG Fan. Study on the shear performance of new bolted shear connectors for prefabricated steel-UHPC composite beams [D]. Guangzhou: Guangzhou University, 2023.
[18]   张凡, 陈炳聪, 刘爱荣, 等 装配式钢-混凝土组合梁高强螺栓剪力连接件力学模型[J]. 工程力学, 2022, 39 (Supp1.1): 173- 179
ZHANG Fan, CHEN Bingcong, LIU Airong, et al Mechanical model of high strength bolt shear connector of fabricated steel-concrete composite beam[J]. Engineering Mechanics, 2022, 39 (Supp1.1): 173- 179
[19]   BALKOS K D. The static and fatigue behaviour of through-bolt shear connectors in steel-precast composite bridge girders [D]. Waterloo: University of Waterloo, 2018.
[20]   邢颖, 刘雁斌, 史才军, 等 可恢复组合梁中高强螺栓连接件抗剪性能试验[J]. 中国公路学报, 2023, 36 (6): 132- 142
XING Ying, LIU Yanbin, SHI Caijun, et al Experimental study on shear performance of high-strength bolt connectors in recoverable composite beams[J]. China Journal of Highway and Transport, 2023, 36 (6): 132- 142
[21]   ZHAO X, SHAO X, CAO J, et al Experimental studies on shear behavior of steel-UHPC composite beam with hot rolled shape steel[J]. Engineering Structures, 2023, 274: 115160
doi: 10.1016/j.engstruct.2022.115160
[22]   肖宜凯. 螺栓连接装配式钢-混凝土组合梁的抗弯性能研究 [D]. 太原: 太原理工大学, 2023.
XIAO Yikai. Study on flexural performance of bolted connections for prefabricated steel-concrete composite beams [D]. Taiyuan: Taiyuan University of Technology, 2023.
[23]   聂建国, 崔玉萍, 石中柱, 等 部分剪力连接钢: 混凝土组合梁受弯极限承载力的计算[J]. 工程力学, 2000, 17 (3): 37- 42
NIE Jianguo, CUI Yuping, SHI Zhongzhu, et al Ultimite flexural capacity of composite steelconcrete beams beams with partial shear connection[J]. Engineering Mechanics, 2000, 17 (3): 37- 42
[24]   JOHNSON R P, MAY I M Partial-interaction design of composite beams[J]. The Structural Engineer, 1978, 53 (8): 305- 311
[25]   李龙. 预制装配式钢-混凝土组合梁受弯性能研究 [D]. 南宁: 广西大学, 2021.
LI Long. Study on flexural performance of prefabricated steel-concrete composite beams [D]. Nanning: Guangxi University, 2021.
[26]   黄侨, 郭赵元, 万世成, 等 钢-混凝土组合梁桥的截面弹性抗弯承载力计算方法研究[J]. 中国公路学报, 2017, 30 (3): 167- 174
HUANG Qiao, GUO Zhaoyuan, WAN Shicheng, et al Research on calculation method of elastic bending capacity for steel-concrete composite beam bridges[J]. China Journal of Highway and Transport, 2017, 30 (3): 167- 174
[1] Min ZHANG,Ming-ke DENG,Ao-long ZHI,Shi-fei SONG,Hui CHEN. Flexural behavior of RC beams strengthened by textile-reinforced highly ductile concrete[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1693-1703.
[2] Xing-bo HAN,Yong-xu XIA,Yong-dong WANG,Fei YE. Probabilistic degradation model for tunnel lining flexural capacity[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2175-2184.
[3] ZHANG Zhong-miao, LIU Jun-wei, ZOU Jian, XIE Zhi-zhuan, HE Jing-yu. Experimental study on flexural and shearing property
of reinforced prestressed concrete pipe pile
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(6): 1074-1080.