Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (8): 1680-1688    DOI: 10.3785/j.issn.1008-973X.2025.08.015
    
Task scheduling optimization for automated guided vehicle based on directed acyclic graph modeling
Yi HU1,2,3(),Mengsheng CUI1,2,Xiyang ZHANG1,2,3,Yanqing ZHAO1,2
1. Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China
2. School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3. Shenyang CASNC Technology Limited Company, Shenyang 110168, China
Download: HTML     PDF(798KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A nested algorithm framework based on the binary particle swarm optimization (BPSO nested framework) was proposed considering multiple task selection strategies to solve the optimal scheduling solution aiming at the issue of optimizing the travel distance for task scheduling of a single-load automated guided vehicle (AGV) between the production line and the warehouse. A dynamic traveling salesman problem model based on directed acyclic graph modeling (DAGDTSP), with the aim of minimizing the total travel distance, was established by considering the task execution sequence constraints and the dynamic changes in task node information in response to environmental variations in order to address the optimal scheduling solution under the fixed task selection strategy. An improved genetic algorithm (IGA) was proposed to solve the model. The experimental results demonstrate that optimal scheduling solutions under the fixed task selection strategy can be effectively solved for AGV task scheduling by employing the IGA algorithm. The BPSO nested framework can improve solution quality, and the optimal scheduling solutions can adapt to task changes to some extent. The DAGDTSP model achieves accuracy on test problems with different environmental parameter settings.



Key wordstask scheduling      total travel distance      directed acyclic graph      genetic algorithm      particle swarm optimization algorithm     
Received: 02 July 2024      Published: 28 July 2025
CLC:  TP 278  
  TH 187  
  TP 399  
Fund:  国家产业基础再造和制造业高质量发展专项资助项目(2022-232-223-01).
Cite this article:

Yi HU,Mengsheng CUI,Xiyang ZHANG,Yanqing ZHAO. Task scheduling optimization for automated guided vehicle based on directed acyclic graph modeling. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1680-1688.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.08.015     OR     https://www.zjujournals.com/eng/Y2025/V59/I8/1680


有向无环图建模的自动导引车任务调度优化

针对生产线和仓库之间单载自动导引车(AGV)任务调度的行驶距离优化问题,考虑多种任务选择策略,提出基于二进制粒子群优化的嵌套算法框架(BPSO嵌套框架),求解优化调度方案. 针对固定任务选择策略下的优化调度方案求解,考虑任务执行顺序约束和任务节点信息随环境变化,以最小化AGV行驶总距离为目标,建立基于有向无环图建模的动态旅行商问题(DAGDTSP)模型,提出改进遗传算法(IGA)求解模型. 实验结果表明,针对AGV任务调度方案的优化,利用IGA算法,能够有效地求解固定任务选择策略下的优化调度方案. BPSO嵌套框架能够提升求解质量,所求解的优化调度方案能够在一定程度上适应任务变化. DAGDTSP模型在不同环境参数设置的测试问题上具备准确性.


关键词: 任务调度,  行驶总距离,  有向无环图,  遗传算法,  粒子群优化算法 
Fig.1 Warehouse topology map and division of business zone
Fig.2 Procedural execution flow of BPSO nested framework
测试问题算法$ {T}_{\rm{b}} $/min$ {{S}}_{\rm{otm}} $/m$ {F} $
1IGA1.45797.5450.044 3
IPSO1.96803.6520.037 0
IACO4.37800.0630.041 3
IWOA1.48800.6850.040 6
ISA9.84797.5450.044 3
ITS1.87797.5450.044 3
贪婪算法0.02803.1650.037 6
随机算法14.18799.0910.042 5
2IGA1.13678.8320.061 7
IPSO1.36686.8600.050 6
IACO3.27686.7420.050 8
IWOA1.23682.4090.056 7
ISA6.99678.8320.061 7
ITS1.98678.8320.061 7
贪婪算法0.02705.1990.025 2
随机算法11.26683.0290.055 9
3IGA0.76523.9140.060 5
IPSO1.02525.3290.057 9
IACO2.01528.8750.051 6
IWOA0.76523.9140.060 5
ISA4.46523.9140.060 5
ITS1.96523.9140.060 5
贪婪算法0.02552.0810.010 0
随机算法4.94523.9140.060 5
4IGA0.57422.9300.051 0
IPSO0.69422.9300.051 0
IACO1.09423.5630.049 6
IWOA0.62422.9300.051 0
ISA2.91422.9300.051 0
ITS1.73422.9300.051 0
贪婪算法0.02429.8910.035 4
随机算法3.91422.9300.051 0
Tab.1 Solution result of IGA and seven other algorithms under benchmark task selection strategy
测试问题F
IGAIGA-NSIGA-NCIGA-NM
10.04430.04400.04400.0425
20.06170.06170.05200.0578
30.06050.06050.05770.0605
40.05100.05100.05100.0503
Tab.2 Solution result of IGA and its variants (IGA-NS/NC/NM)
测试问题$ \left|{{ \varOmega }}^{*}\right| $$ {{S}}_{\rm{ot}{m}} $/m$ {F} $$ {T}_{{{\mathrm{m}}}} $/min
13628800783.1170.0616142.94
21330560669.4660.0746117.76
3720520.8120.066022.77
470422.9300.05101.64
Tab.3 Solution result of BPSO nested framework
测试问题求解策略$ {F}_{{\mathrm{max}}} $$ {F}_{{\mathrm{avg}}} $$ {F}_{{\mathrm{med}}} $$ {F}_{{\mathrm{mom}}} $
1BPSO0.06160.06040.06030.0603
BGA0.05990.05880.05930.0599
BWOA0.05990.05570.0559
BPSO-II0.06850.06130.05990.0599
2BPSO0.07460.07460.07460.0746
BGA0.07460.07420.07460.0746
BWOA0.07460.07310.07310.0746
BPSO-II0.07460.07410.07460.0746
Tab.4 Optimization effect analysis of four solving strategies
测试
问题
$ {N}_{{\mathrm{tvc}}} $$ {F} $
减产延期重新求解原优化调度方案
116160.07300.0728
212120.10430.0706
310100.07730.0707
4880.06120.0457
Tab.5 Optimization effect of test problem in post-task change
测试
问题
F
C = 12, R = 3C = 12, R = 4C = 10, R = 3C = 10, R = 4
10.06030.06120.07150.0727
20.07460.07590.05680.0590
30.06600.06690.10230.1041
40.05100.05160.06970.0707
Tab.6 Optimization effect of test problem with different environment parameter
[1]   牛昊一, 吴维敏, 章庭棋, 等 自适应樽海鞘群算法求解考虑运输时间的柔性作业车间调度[J]. 浙江大学学报: 工学版, 2023, 57 (7): 1267- 1277
NIU Haoyi, WU Weimin, ZHANG Tingqi, et al Adaptive salp swarm algorithm for solving flexible job shop scheduling problem with transportation time[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (7): 1267- 1277
[2]   WU Y, ZHU X, FEI J, et al A novel joint optimization method of multi-agent task offloading and resource scheduling for mobile inspection service in smart factory[J]. IEEE Transactions on Vehicular Technology, 2024, 73 (6): 8563- 8575
doi: 10.1109/TVT.2024.3361492
[3]   ZHANG Z, WU L, ZHANG W, et al Energy-efficient path planning for a single-load automated guided vehicle in a manufacturing workshop[J]. Computers and Industrial Engineering, 2021, 158: 107397
doi: 10.1016/j.cie.2021.107397
[4]   LI Y, HUANG H Efficient task planning for heterogeneous AGVs in warehouses[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25 (8): 10005- 10019
doi: 10.1109/TITS.2024.3356514
[5]   XIE L, LI H, LUTTMANN L Formulating and solving integrated order batching and routing in multi-depot AGV-assisted mixed-shelves warehouses[J]. European Journal of Operational Research, 2023, 307 (2): 713- 730
doi: 10.1016/j.ejor.2022.08.047
[6]   李昆鹏, 刘腾博, 李文莉 改进自适应遗传算法求解“货到人”拣选系统订单分批问题[J]. 机械工程学报, 2023, 59 (4): 308- 317
LI Kunpeng, LIU Tengbo, LI Wenli Improved adaptive genetic algorithm for order batching of “part-to-picker” picking system[J]. Journal of Mechanical Engineering, 2023, 59 (4): 308- 317
doi: 10.3901/JME.2023.04.308
[7]   范厚明, 郭振峰, 岳丽君, 等 考虑能耗节约的集装箱码头双小车岸桥与AGV联合配置及调度优化[J]. 自动化学报, 2021, 47 (10): 2412- 2426
FAN Houming, GUO Zhenfeng, YUE Lijun, et al Joint configuration and scheduling optimization of dual-trolley quay crane and AGV for container terminal with considering energy saving[J]. Acta Automatica Sinica, 2021, 47 (10): 2412- 2426
[8]   王无印, 黄子钊, 庄子龙, 等 基于深度强化学习的自动化码头堆场场桥调度方法[J]. 机械工程学报, 2024, 60 (6): 44- 57
WANG Wuyin, HUANG Zizhao, ZHUANG Zilong, et al Yard crane scheduling method based on deep reinforcement learning for the automated container terminal[J]. Journal of Mechanical Engineering, 2024, 60 (6): 44- 57
[9]   YUE L, FAN H Dynamic scheduling and path planning of automated guided vehicles in automatic container terminal[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9 (11): 2005- 2019
doi: 10.1109/JAS.2022.105950
[10]   SUN P Z H, YOU J, QIU S, et al AGV-based vehicle transportation in automated container terminals: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (1): 341- 356
doi: 10.1109/TITS.2022.3215776
[11]   WANG Y, LIU X, LENG J, et al Study on scheduling and path planning problems of multi-AGVs based on a heuristic algorithm in intelligent manufacturing workshop[J]. Advances in Production Engineering & Management, 2022, 17 (4): 505- 513
[12]   ZACHARIA P T, XIDIAS E K AGV routing and motion planning in a flexible manufacturing system using a fuzzy-based genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109 (7): 1801- 1813
[13]   DE RYCK M, VERSTEYHE M, SHARIATMADAR K Resource management in decentralized industrial automated guided vehicle systems[J]. Journal of Manufacturing Systems, 2020, 54: 204- 214
doi: 10.1016/j.jmsy.2019.11.003
[14]   高文文, 胡志华 考虑任务偏序关系的AGV路径优化[J]. 大连海事大学学报, 2019, 45 (4): 45- 54
GAO Wenwen, HU Zhihua AGV routing optimization considering task partial order relation[J]. Journal of Dalian Maritime University, 2019, 45 (4): 45- 54
[15]   祁璇, 周通, 王村松, 等 基于改进近端策略优化算法的AGV路径规划与任务调度[J]. 计算机集成制造系统, 2025, 31 (3): 955- 964
QI Xuan, ZHOU Tong, WANG Cunsong, et al AGV path planning and task scheduling based on improved proximal policy optimization algorithm[J]. Computer Integrated Manufacturing Systems, 2025, 31 (3): 955- 964
[16]   SLOWIK A, KWASNICKA H Evolutionary algorithms and their applications to engineering problems[J]. Neural Computing and Applications, 2020, 32 (16): 12363- 12379
doi: 10.1007/s00521-020-04832-8
[17]   NAYAK J, SWAPNAREKHA H, NAIK B, et al 25 years of particle swarm optimization: flourishing voyage of two decades[J]. Archives of Computational Methods in Engineering, 2022, 30 (3): 1663- 1725
[18]   TANG J, LIU G, PAN Q A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8 (10): 1627- 1643
doi: 10.1109/JAS.2021.1004129
[19]   NADIMI-SHAHRAKI M H, ZAMANI H, ASGHARI VARZANEH Z, et al A systematic review of the whale optimization algorithm: theoretical foundation, improvements, and hybridizations[J]. Archives of Computational Methods in Engineering, 2023, 30 (7): 4113- 4159
doi: 10.1007/s11831-023-09928-7
[20]   WEI L, ZHANG Z, ZHANG D, et al A simulated annealing algorithm for the capacitated vehicle routing problem with two-dimensional loading constraints[J]. European Journal of Operational Research, 2018, 265 (3): 843- 859
doi: 10.1016/j.ejor.2017.08.035
[21]   李国明, 李军华 基于混合禁忌搜索算法的随机车辆路径问题[J]. 控制与决策, 2021, 36 (9): 2161- 2169
LI Guoming, LI Junhua Stochastic vehicle routing problem based on hybrid tabu search algorithm[J]. Control and Decision, 2021, 36 (9): 2161- 2169
[1] Guohua XING,Yongjian LU,Pengyong MIAO,Sijin CHEN. Optimal design method of temporary broadcasting tower structure based on improved genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 469-479.
[2] Yunchen ZHU,Mingjun CHENG,Xinwen ZHENG,Peili CEN,Xiangshuo XI,Shan HUANG,Chen HUA,Hai HUANG. Fuzzy location selection of urban emergency facilities based on optimized non-dominated sorting genetic algorithm III[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1832-1843.
[3] Yali XUE,Hanyan LI,Quan OUYANG,Shan CUI,Jun HONG. Multi-UAVs collaborative task allocation based on genetic slime mould algorithm in battlefield environment[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1748-1756.
[4] Maochen MEN,Rui ZHAO,Jinshuai ZHANG,Peng WANG,Qing ZHANG. Evaluation of distributed photovoltaic hosting capacity of distribution networks based on improved simulated annealing-particle swarm optimization[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1255-1265.
[5] Jie ZHAO,Feng LIU,Ling XIA,Yifeng FAN. Passive shimming optimization method of MRI based on genetic algorithm-sequential quadratic programming[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1305-1314.
[6] Lifeng LI,Kun HOU,Deqiang ZOU,Hao PENG,Lingxiao LI. Optimization of section layout of steel plate composite beam with medium span[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 510-517.
[7] Yan ZHAN,Jieya CHEN,Weiguang JIANG,Jiansha LU,Hongtao TANG,Xinyu SONG,Lili XU,Saimiao LIU. Multi-objective workshop material distribution method based on improved NSGA-[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2510-2519.
[8] Lifang CHEN,Huogen YANG,Zhichao CHEN,Jie YANG. Global path planning with integration of B-spline technique and genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2520-2530.
[9] Yue’an WU,Changping DU,Rui YANG,Jiahao YU,Tianrui FANG,Yao ZHENG. Area coverage path planning for tilt-rotor unmanned aerial vehicle based on enhanced genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2031-2039.
[10] Hao ZHENG,Yi CAO,Shan WANG. Feeder bus route optimization of multiple subway stations considering station transfer[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2162-2170.
[11] Peng LIU,Qingchang LU,Han QIN,Xin CUI. Road network multi-stage disaster resistance optimization model and its application[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 96-108.
[12] Huang LI,Hong-juan GE,Ying MA,Yong-shuai WANG. Parameters optimization design of dual-input dual-buck inverter system based on hyperplane NSGA-II[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 606-615.
[13] Li-li XU,Yan ZHAN,Jian-sha LU,Yi-ding LANG. Compound operation scheduling optimization in four-way shuttle warehouse system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2188-2199.
[14] Hao ZHA,Shao-hua FEI,Yun FU,Zhen LV,Wei-dong ZHU. Online decoupling technology of six-dimensional force sensor based on EtherCAT bus[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2042-2050.
[15] Yong-sheng ZHAO,Rui-xiang LI,Na-na NIU,Zhi-yong ZHAO. Shape control method of fuselage driven by digital twin[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1457-1463.