Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (6): 1305-1314    DOI: 10.3785/j.issn.1008-973X.2024.06.020
    
Passive shimming optimization method of MRI based on genetic algorithm-sequential quadratic programming
Jie ZHAO1(),Feng LIU2,Ling XIA3,Yifeng FAN1,*()
1. School of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, China
2. School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane 4072, Australia
3. Key Laboratory of Biomedical Engineering, Ministry of Education, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(2533KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A genetic algorithm-sequential quadratic programming (GA-SQP) was proposed to improve the uniformity performance of main magnetic field (B0) in 7 T magnetic resonance imaging (MRI), in order to solve the inherent problem of uneven B0 field in MRI system. From the perspective of the mathematical model of passive shimming, a stable initial solution was obtained with the GA algorithm to achieve the first optimization of B0 field, and then the second optimization of the main magnetic field was realized in less time through the rapid solution of the SQP algorithm, and the uniformity of B0 of MRI was significantly improved. Additionally, L1-Norm regularization method was utilized to reduce the weight of the iron sheets and obtain a sparse iron distribution. Through simulation-based case studies, a bare magnetic field successfully shimmed with an uniformity of 462$ \times $10?6 to 4.5$ \times $10?6, using only 0.8 kg of iron pieces on shimming space. The magnetic field uniformity of the new solution was improved by 96.7% and the total iron sheet consumption weight was reduced by 85.7%, compared with those of the traditional GA optimization method. Experimental results show that the GA-SQP algorithm is more robust and competitive than other optimization algorithms.



Key wordsmagnetic resonance imaging      passive shimming      genetic algorithm-sequential quadratic programming (GA-SQP)      regularization method      nonlinear programming     
Received: 06 July 2023      Published: 25 May 2024
CLC:  TP 3  
Fund:  浙江省基础公益研究计划资助项目(LTGY23H180019).
Corresponding Authors: Yifeng FAN     E-mail: zjuzhaojie@zju.edu.cn;fanyifeng@hmc.edu.cn
Cite this article:

Jie ZHAO,Feng LIU,Ling XIA,Yifeng FAN. Passive shimming optimization method of MRI based on genetic algorithm-sequential quadratic programming. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1305-1314.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.06.020     OR     https://www.zjujournals.com/eng/Y2024/V58/I6/1305


基于遗传算法-序列二次规划的磁共振被动匀场优化方法

为了解决磁共振成像(MRI)系统中固有的主磁场(B0)不均匀的问题,提出遗传算法-序列二次规划(GA-SQP)算法,以提高7 T磁共振的主磁场均匀性. 从被动匀场数学模型的角度出发,该混合算法利用GA算法获得稳定的初始解,实现主磁场的第1次优化,再通过SQP算法的快速求解,在较少的时间内实现主磁场的第2次优化,同时提高磁共振主磁场的均匀性. 采用正则化方法减少磁场均匀所需的铁片质量,并且获得稀疏的铁片分布. 在仿真建模的案例研究中,7 T磁共振裸磁场均匀度可以从462$ \times $10?6 优化到4.5$ \times $10?6,并且在匀场空间上仅消耗0.8 kg的铁片. 相比于传统的GA优化方法,新方案的磁场均匀性提高了96.7%,总铁片消耗质量减少了85.7%. 实验结果表明,GA-SQP算法比其他优化算法具有更强的鲁棒性和竞争力.


关键词: 磁共振成像,  被动匀场,  遗传算法-序列二次规划(GA-SQP),  正则化方法,  非线性优化 
Fig.1 MRI system and internal shim system
Fig.2 Schematic diagram of magnetic field effect of unit shim iron sheet
Fig.3 Flow chart of GA-SQP algorithm
物理量/单位数值
磁场强度/ T7
球形区域直径/ mm400
匀场托盘半径/ mm360
匀场托盘数量24
每个托盘匀场抽屉数量24
匀场片尺寸/ mm40$ \times $50
每个匀场片厚度/ mm0.1
匀场抽屉最大厚度/ mm12
Tab.1 Passive shimming system parameters of 7 T MRI
Fig.4 Diagram of bare magnetic field at 7 T MRI
Fig.5 Simulation results of magnetic field distribution and shim iron sheet thickness of GA algorithm
Fig.6 Planar distribution of iron sheets obtained by GA algorithm
初始点算法tFo/10?6
Upper boundSQP3 2567.9
Lower boundSQP3675.5
Middle pointSQP7246.8
RandomGA170 345145.0
GA solutionGA-SQP80 3674.5
Tab.2 Results of SQP algorithm with different initial points
Fig.7 Simulation results of magnetic field distribution and shim iron sheet thickness of SQP algorithm
Fig.8 Planar distribution of iron sheet obtained by SQP algorithm
Fig.9 Optimization trajectory of different optimization methods
Fig.10 Simulation results of magnetic field distribution and shim iron sheet thickness of GA-SQP algorithm
Fig.11 Planar distribution of iron sheet obtained by GA-SQP hybrid algorithm
算法F/10?6M/kg
GA145.05.6
GA-SQP4.50.8
SQP5.51.5
LS6.89.6
LP12.09.5
Tab.3 Simulation results of different optimization algorithms
[1]   WANG Q, WEN H, LIU F, et al. Development of high magnetic field magnet technologies for the magnetic resonance medical imaging [C]// IEEE International Conference on Applied Superconductivity and Electromagnetic Devices . Shanghai: IEEE, 2015: 404−405.
[2]   JIN J. Electromagnetic analysis and design in magnetic resonance imaging [M]// New York: Routledge, 2018: 5−31.
[3]   EREGIN V E, KASHIKHIN M Formation of homogeneous field in a shielded superconducting solenoid for an MRI[J]. IEEE Transactions on Magnetics, 1992, 28 (1): 675- 677
doi: 10.1109/20.119968
[4]   FROLLO I, ANDRIS P, STROLKA I Measuring method and magnetic field homogeneity optimization for magnets used in NUM-imaging[J]. Measurement Science Review, 2001, 1 (1): 1- 4
[5]   LVOVSKY Y, JARVIS A S Superconducting systems for MRI-present solutions and new trends[J]. IEEE Transactions on Applied Superconductivity, 2005, 15 (2): 1317- 1325
doi: 10.1109/TASC.2005.849580
[6]   DORRI B, VERMILYEA E Passive shimming of MR magnets: algorithm, hardware and results[J]. IEEE Transactions on Applied Superconductivity, 1993, 3 (1): 254- 257
doi: 10.1109/77.233719
[7]   BELOV A, BUSHUEY V Passive shimming of the superconducting magnet for MRI[J]. IEEE Transactions on Applied Superconductivity, 1995, 5 (2): 679- 681
doi: 10.1109/77.402639
[8]   LIU F, ZHU J, XIA L, et al A hybrid field-harmonics approach for passive shimming design in MRI[J]. IEEE Transactions on Applied Superconductivity, 2011, 21 (2): 60- 67
doi: 10.1109/TASC.2011.2112358
[9]   SANCHEZ H, LIU F, WEBER E, et al Passive shim design and a shimming approach for Biplanar permanent magnetic resonance imaging magnets[J]. IEEE Transactions on Magnetics, 2008, 44 (3): 394- 402
doi: 10.1109/TMAG.2007.914770
[10]   ZHU X, WANG H, WANG H, et al A novel design method of passive shimming for 0.7-T Biplanar superconducting MRI magnet[J]. IEEE Transactions on Applied Superconductivity, 2016, 26 (7): 418- 419
[11]   YOU X F, WANG Z, ZHANG X B, et al Passive shimming based on mixed integer programming for MRI magnet[J]. Science China Technological Sciences, 2013, 5 (5): 1208- 1212
[12]   ZHANG Y, XIE D, BAI B, et al A novel optimal design method of passive shimming for permanent MRI magnet[J]. IEEE Transactions on Magnetics, 2008, 44 (6): 1058- 1061
doi: 10.1109/TMAG.2007.916267
[13]   JIN Z, TANG X, MENG B, et al A SQP optimization method for shimming a permanent MRI magnet[J]. Progress in Natural Science, 2009, 19 (10): 1439- 1443
doi: 10.1016/j.pnsc.2009.04.007
[14]   KONG X, ZHU M, XIA L, et al Passive shimming of a superconducting magnet using the L1-norm regularized least square algorithm[J]. Journal of Magnetic Resonance, 2016, 263: 122- 125
doi: 10.1016/j.jmr.2015.11.019
[15]   MITSUSHI A, KENJI S, TAKUYA F, et al Static magnetic field shimming calculation using TSVD regularization with constraints of iron piece placements[J]. IEEE Transactions on Applied Superconductivity, 2017, 27 (7): 1- 4
[16]   NOGUCHI S, HAHN S, IWASA Y S Passive shimming for magic-angle-spinning NMR[J]. IEEE Transactions on Applied Superconductivity, 2013, 24 (3): 1- 4
[17]   LI F, VOCCIO J, SAMMARTINO M, et al A theoretical design approach for passive shimming of a magic-angle-spinning NMR Magnet[J]. IEEE Transactions on Applied Superconductivity, 2016, 26 (4): 1- 4
[18]   QU H, NIU C, WANG Y, et al The optimal target magnetic field method for passive shimming in MRI[J]. Journal of Superconductivity and Novel Magnetism, 2020, 33 (3): 867- 875
doi: 10.1007/s10948-019-05241-2
[19]   WANG W, WANG Y, WANG H, et al On the passive shimming of a 7 T whole-body MRI superconducting magnet: implementation with minimized ferromagnetic materials usage and operable magnetic force control[J]. Medical Physics, 2023, 50 (10): 6514- 6524
doi: 10.1002/mp.16538
[20]   YAO Y, FANG Y, KOH C, et al A new design method for completely open architecture permanent magnet for MRI[J]. IEEE Transactions on Magnetics, 2005, 41 (5): 1504- 1507
doi: 10.1109/TMAG.2005.845080
[21]   GABOR R, ANIKO E Genetic algorithms in computer aided design[J]. Computer-Aided Design, 2003, 35 (8): 709- 726
doi: 10.1016/S0010-4485(03)00003-4
[22]   NOCEDAL J, WRIGHT S J. Numerical optimization: springer series in operations research and financial engineering [M]// New York: Springer, 2006: 270−302.
[23]   MANSOORNEJAD B, MOSTOUFI N, FARHANG J A hybrid GA-SQP optimization technique for determination of kinetic parameters of hydrogenation reactions[J]. Computers and Chemical Engineering, 2008, 32 (7): 1447- 1455
doi: 10.1016/j.compchemeng.2007.06.018
[24]   MERA, N S Hybrid GA-SQP algorithms for three-dimensional boundary detection problems in potential corrosion damage[J]. Mathematics, 2005, (10): 225- 242
[25]   LYANTSEV O, BREIKIN T, KULIKOV G, et al On-line performance optimization of aero engine control system[J]. Automatica, 2003, 39 (12): 2115- 2121
doi: 10.1016/S0005-1098(03)00224-3
[1] Jia-cheng LIU,Jun-zhong JI. Classification method of fMRI data based on broad learning system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1270-1278.
[2] Yi-peng HUANG,Ji-su HU,Xu-sheng QIAN,Zhi-yong ZHOU,Wen-lu ZHAO,Qi MA,Jun-kang SHEN,Ya-kang DAI. SE-Mask-RCNN: segmentation method for prostate cancer on multi-parametric MRI[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 203-212.
[3] Yun QI,Da-ming SUN,Shi-yue SU,Xin QIAO. Design and numerical analysis of a cooling system for low temperature superconducting magnet of magnetic resonance imaging[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 965-971.
[4] De-hua SHI,Ying-feng CAI,Shao-hua WANG,Long CHEN,Zhen ZHU,Li-xin GAO. Nonlinear predictive control of power split hybrid electric vehicle with optimal system efficiency[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2271-2279.
[5] HE Wei, XIA Ling. Region-growing phase unwrapping method based on mask[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 792-797.
[6] CHEN Guo-xin, CHEN Sheng-chang. Regularization method with p-norm sparsity constraints for potential field data reconstruction[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 748-785.
[7] HE Wei, XIA Ling. Region-growing phase unwrapping method based on mask[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1-2.
[8] JIANG Ming-feng, ZHU Li-tao, WANG Ya-ming, XIA Ling, GONG Ying-lan.
Parallel MRI based on combination of nonlinear GRAPPA and SENSE
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1865-1870.
[9] SUN Yue, ZHAO Zhi-bin, SU Yu-gang, TANG Chun-sen. Nonlinear programming research on contactless power transfer
system parameters
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(2): 353-360.
[10] ZHOU Shui-qin, YING Yi-bin, SHANG De-sheng. Morphology based noninvasive detection for fragrant pears browning
with magnetic resonance imaging
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2141-2145.
[11] LIU Xiao-fang,YE Xiu-zi ,ZHANG San-yuan ,ZHANG Yin. Non-quadratic regularized edge-preserving reconstruction for
parallel magnetic resonance image
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(11): 2035-2043.
[12] LIU Yang, WU Zhan-xiong, ZHU Shan-an, HE Bin. Induced current magnetic resonance electrical impedance tomography
for anisotropic brain tissues
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 168-172.