Please wait a minute...
J4  2012, Vol. 46 Issue (11): 2035-2043    DOI: 10.3785/j.issn.1008-973X.2012.11.016
    
Non-quadratic regularized edge-preserving reconstruction for
parallel magnetic resonance image
LIU Xiao-fang1,2,YE Xiu-zi 3,ZHANG San-yuan 1,ZHANG Yin 1
1.College of Computer Science, Zhejiang University, Hangzhou 310027, China;
2. Institute of Information Engineering, China Jiliang University, Hangzhou 310018, China
3.College of Mathematics & Information Science, Wenzhou University, Wenzhou,325035, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the images of poor quality resulted from the aliasing artifacts and noise in parallel magnetic resonance imaging,which was reconstructed from  high reduction undersampling sensitivityencoding data, a non-quadratic regularized edge-preserving reconstruction algorithm was proposed. Based on Sensitivity Encoding technique, the algorithm used an edge-preserving nonquadratic convex function as the regularization term, and then a non-quadratic cost function was constructed. Using nonlinear conjugate gradient method, reconstruction image was obtained by minimizing the objective function. In order to evaluate the robust and validity of the proposed algorithm, analysis on severe undersampling data  was presented and discussed. Based on the analysis indicator known as normalized mean squared error, the results show that for high acceleration factors, the proposed algorithm evidently reduces the aliasing artifacts in the reconstruction images, and noise is effectively restrained as well as edge information is preserved. Furthermore, the proposed algorithm can be quick convergence.



Published: 11 December 2012
CLC:  TP 391.4  
Cite this article:

LIU Xiao-fang,YE Xiu-zi ,ZHANG San-yuan ,ZHANG Yin. Non-quadratic regularized edge-preserving reconstruction for
parallel magnetic resonance image. J4, 2012, 46(11): 2035-2043.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.11.016     OR     http://www.zjujournals.com/eng/Y2012/V46/I11/2035


并行磁共振图像的非二次正则化保边性重建

针对并行磁共振在欠采样率较高情况下重建图像存在的混迭伪影和噪声问题,提出一种非二次正则化的保边性图像重建算法.基于SENSE技术,该算法以保边平滑性的非二次凸函数为正则化项,构建一个非二次代价函数,并运用非线性共轭梯度算法求解该最小化问题,实现并行磁共振图像的保边性重建.为了评价算法的有效性和鲁棒性,以归一化均方误差作为评价准则,分析并行磁共振欠采样率最大时真实数据和仿真数据的图像重建.结果表明,该算法显著减少欠采样率较高时并行磁共振图像的混迭伪影,并能够有效抑制噪声和保留边缘信息.相比于其他图像重建算法,该算法能够快速收敛.

[1] PRUESSMANN K P, WEIGER M, SCHEIDEGGER M B, et al. SENSE:sensitivity encoding for fast MRI [J]. Magnetic Resonance in Medicine, 1999, 42(5): 952-962.
 [2] GRISWOLD M A, JAKOB P M, HEIDEMANN R M, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA)  [J]. Magnetic Resonance in Medicine, 2002, 47(6): 1202-1210.
 [3] MCKENZIE C A, YEH E N, OHLIGER M A, et al. Selfcalibrating parallel imaging with automatic coil sensitivity extraction [J]. Magnetic Resonance in Medicine, 2002, 47(3): 529-538.
 [4] HANSEN P C. Rankdeficient and discrete Illposed problems: numerical aspects of linear inversion [M]. SIAM Monographs on Mathematical Modeling and Computation,philadetphia:SIAM, 1997: 1-16.
 [5] RIBES A, SCHMITT F. Linear inverse problems in imaging: An introductory survey [J]. IEEE Signal Processing Magazine, 2008,25(4): 84-99.
 [6] LIANG Z P, BAMMER R, JI J, et al. Making better SENSE: wavelet denoising, Tikhonov regularization, and totalleast squares [C]∥ Processing of the 10th Annual Meeting of ISMRM, Honolulu. HI: ISMRM, 2002: 2388.
 [7] OMER H, DICKINSON R. Regularization in parallel MR image reconstruction  [J]. Concepts in Magnetic Resonance Part A, 2011, 38A(2): 52-60.
 [8] LIN F H, WANG F N, AHLFORS S P, et al. Parallel MRI reconstruction using variance partitioning regularization [J]. Magnetic Resonance in Medicine, 2007, 58(4): 735-744.
 [9] RAJ A, SINGH G, ZABIH R, et al. Bayesian parallel imaging with edgepreserving priors [J]. Magnetic Resonance in Medicine, 2007, 57(1): 8-21.
 [10] DONOHO D L. Compressive sensing [J]. IEEE Trans. on Information Theory, 2006, 52(4): 1289-1306.
 [11] LUSTIG M, DONOHO D L, PAULY J M. Sparse MRI: The application of compressed sensing for rapid MR imaging [J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195.
 [12] LIANG D, LIU B, WANG J J, et al. Accelerating SENSE using compressed sensing [J]. Magnetic Resonance in Medicine, 2009, 62(6): 1574-1584.
[13] WU B, MILLANE R P, WATTS R, et al.Prior estimatebased compressed sensing in parallel MRI  [J]. Magnetic Resonance in Medicine, 2011, 65(1): 83-95.
 [14] FANG S, YING K, ZHAO L, et al. Cohere regularization for SENSE reconstruction with a nonlocal operator(CORNOL) [J]. Magnetic Resonance in Medicine, 2010, 64(5): 1414-1426.
 [15] LIANG D, WANG H F, CHANG Y C, et al. Sensitivity encoding reconstruction with nonlocal total variation regularization [J]. Magnetic Resonance in Medicine, 2010, 65(5): 1384-1392.
 [16] GILDOA G, OSHER S. Nonlocal operators with applications to image processing [J]. Multiscale Model Simul, 2008, 7(3): 1005-1028.
 [17] FESSLER J  A. Modelbased image reconstruction for MRI [J]. IEEE Signal Processing Magazine, 2010, 27(4): 81-89.
 [18] KUNSCH H R.. Robust priors for smoothing and image restoration  [J].Ann. Inst. Stat. Math, 1994, 46 (1): 1-19.
 [19] JI J X, SON J B, RANE S D. PULSAR: A MATLAB Toolbox for parallel magnetic resonance imaging using array coils and multiple channel receivers [J]. Concepts in Magnetic Resonance Part B, 2007, 31B(1): 24-36.
 [20] PRUESSMANN K P. Encoding and reconstruction in parallel MRI [J]. NMR in Biomed, 2006, 19(3): 288-299.
 [21] PRUESSMANN K P, WEIGER M, BOMERT P, et al. Advances in sensitivity encoding with arbitrary kspace trajectories [J]. Magnetic Resonance in Medicine, 2001, 46(4): 638-651.
 [22] LIU B, KING K, STECKNER M, et al. Regularized sensitivity encoding (SENSE)reconstruction using bregman iterations [J]. Magnetic Resonance in Medicine, 2009, 61: 638-651.
 [23] AFONSO M V, BIOUCSADIAS J M, FIGUEIREDO. Fast image recovery using variable splitting and constrained optimization [J]. IEEE Trans. on Image Processing, 2010, 19(9): 2345-2356.
 [24] VOGEL C R. Computational methods for inverse problems [M]. The SIAM series on Frontiers in Applied Mathematics. Frontiers in applied mathematics, philadelphia:SIAM,2002: 29-39.

[1] XU Song,SUN Xiu-xia,HE Yan. Iterative method of camera distortion calibration utilizing lines-imaging characteristics[J]. J4, 2014, 48(3): 404-413.
[2] . Augmented reality registration from nature features ased on planar color distribution[J]. J4, 2013, 47(12): 2243-2252.
[3] YANG Bing, XU Duan-qing, YANG Xin, ZHAO Lei, TANG Da-wei. Painting image classification based on aesthetic style similarity rule[J]. J4, 2013, 47(8): 1486-1492.
[4] YANG Bang-hua, HE Mei-yan, LIU Li, LU Wen-yu. EEG classification based on batch incremental SVM in
brain computer interfaces
[J]. J4, 2013, 47(8): 1431-1436.
[5] LOU Xiao-jun, SUN Yu-xuan, LIU Hai-tao. Clustering boundary over-sampling classification method for imbalanced data sets[J]. J4, 2013, 47(6): 944-950.
[6] MENG Zi-bo, JIANG Hong, CHEN Jing, YUAN Bo, WANG Li-qiang. Feature pruning based AdaBoost and its application in face detection[J]. J4, 2013, 47(5): 906-911.
[7] HE Zhi-xiang, DING Xiao-qing, FANG Chi, WEN Di. Multiview face detection based on LBP and CCS-AdaBoost[J]. J4, 2013, 47(4): 622-629.
[8] ZHANG Yuan-hui,WEI Wei. Online angular velocity estimated visual measurement for ping pong robot[J]. J4, 2012, 46(7): 1320-1326.
[9] SHI Jin-he, SHENG Ji-zhong, WANG Pan. Feature extraction and classification of four-class
motor imagery EEG data
[J]. J4, 2012, 46(2): 338-344.
[10] ZHANG Da-wei, ZHU Shan-an. Face recognition based kernel neighborhood preserving
discriminant embedding
[J]. J4, 2011, 45(10): 1842-1847.
[11] SHU Zhen-yu, WANG Guo-zhao. Fast mesh segmentation algorithm based on tensor voting[J]. J4, 2011, 45(6): 999-1005.
[12] Xu Shu-chang, ZHANG San-yuan, ZHANG Yin. Robust algorithm for extracting skin pigment concentration
from color image
[J]. J4, 2011, 45(2): 253-258.
[13] SHE Jing-Shan, MENG Meng, LUO Zhi-Ceng, MA Yu-Liang. Electromyography movement recognition of lower limb based on multiple kernel learning[J]. J4, 2010, 44(7): 1292-1297.
[14] XUE Ling-Yun, DUAN Hui-Long, XIANG Hua-Qi, FAN Ying-Le. Image restoration based on stochastic resonance mechanism of FitzHugh-Nagumo neuron[J]. J4, 2010, 44(6): 1103-1107.
[15] ZHANG Yuan-Hui, HUI Wei, YU Dan. Kalman tracking algorithm based on realtime vision of pingpong robot[J]. J4, 2009, 43(09): 1580-1584.