Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (9): 1866-1873    DOI: 10.3785/j.issn.1008-973X.2024.09.011
    
Calculation method of seismic response for steel frame coupled with rocking structure and dampers
Wenjin ZHANG1,2(),Guoqiang LI2,Xiaohua HU1,Jingzhou ZHANG3,Botao HUANG4,Shengzhi ZHAO1
1. Zhejiang Construction Co. Ltd, China Construction Eighth Engineering Division, Hangzhou 310000, China
2. College of Civil Engineering, Tongji University, Shanghai 200092, China
3. College of Civil Engineering, Guangzhou University, Guangzhou 510000, China
4. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1568KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Steel frame coupled with rocking structure and dampers (SRF) achieves superior seismic behavior under earthquake excitation, with nonuniform inter-story drift restrained by rocking truss structure and inputting-energy dissipated by dampers located around rotational point. The elastic calculation method of SRF was deduced. The equivalent model of single degree of freedom (SDOF) was established for SRF and the evaluation method of nonlinear seismic response for SRF was promoted by equivalent linearization method. Meanwhile, the ductility demand spectra under three types of earthquake records recommended by ATC-63 was developed based on time-history dynamic analysis results. Results show that the elastic calculation method can be used to calculate the structural response of SRF under lateral loads. Structural mechanism and nonlinear seismic response under earthquake excitation can be accurately evaluated by the equivalent model of SDOF and the seismic response of actual structure can be predicted by the deduced seismic response calculation method of SRF. Ductility demand spectra for SRF obtained by SDOF is appropriate to the fact that post-yield ratio of SRF is greater than that of the steel-frame structures, which can be referred in the practical design.



Key wordsrocking structure      damper      seismic response      equivalent model of single degree of freedom      ductility demand spectra     
Received: 18 July 2023      Published: 30 August 2024
CLC:  TU 4  
Fund:  国家十四五重点研发计划资助项目(2022YFC3801900).
Cite this article:

Wenjin ZHANG,Guoqiang LI,Xiaohua HU,Jingzhou ZHANG,Botao HUANG,Shengzhi ZHAO. Calculation method of seismic response for steel frame coupled with rocking structure and dampers. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1866-1873.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.09.011     OR     https://www.zjujournals.com/eng/Y2024/V58/I9/1866


消能摇摆钢框架结构地震反应的计算方法

消能摇摆钢框架结构(SRF)通过摇摆钢桁架抑制各楼层发生不均匀地震变形,通过位于转动底脚的阻尼器消耗地震输入能量,抗震性能良好. 推导消能摇摆钢框架结构的弹性计算方法,提出SRF等效单自由度(SDOF)分析模型,基于等效线性化原理给出SRF非线性地震反应的计算方法. 采用ATC-63推荐的地震动记录集进行结构弹塑性地震反应分析,得到SRF在3类地震动激励下的延性需求谱. 研究表明,由弹性计算方法可以得到SRF在水平作用下的力学反应,等效单自由度分析模型能准确描述整体结构的受力机理和非线性地震反应,依此推导所得的SRF地震反应计算方法可用于预估实际结构的地震反应. 相比于普通钢框架结构,SRF屈服后刚度比的取值范围更大,计算所得的延性需求谱与之匹配,可作为设计参考.


关键词: 摇摆结构,  阻尼器,  地震反应,  等效单自由度模型,  延性需求谱 
Fig.1 Steel frame coupled with rocking structure and dampers
Fig.2 Simplified model of SRF
Fig.3 Equivalent model of single degree of freedom for SRF
Fig.4 Elastoplasticity characteristics of equivalent SDOF for SRF
参数数值参数数值
kf /(kN·m?1)2124.6kbrc /(kN·m?1)44506.2
Dy2 /m0.1080Dy1 /m0.0063
Ff /kN229.5Fbrc /kN280.4
αbrc0.008αf0.055
meq /t271.7
Tab.1 Basic structural parameters of SDOF
Fig.5 Elastic-plastic seismic response comparison of SRF and SDOF
Fig.6 Equivalent bilinear elastic-plastic stiffness model of SDOF
Fig.7 Ductility demand spectra for SRF
[1]   张文津. 基于消能摇摆减震机制的建筑钢结构体系与设计方法研究[D]. 上海: 同济大学, 2021.
ZHANG Wenjin. Study on structural system and design of steel buildings based on rocking and damping mechanism structures and dampers [D]. Shanghai: Tongji University, 2021.
[2]   HOUSNER G The behavior of inverted pendulum structures during earthquakes[J]. Bulletin of the Seismological Society of America, 1963, 53 (2): 403- 417
doi: 10.1785/BSSA0530020403
[3]   MEEK J Dynamic response of tipping core buildings[J]. Earthquake Engineering and Structural Dynamics, 1978, 15 (6): 437- 454
[4]   MANDER J, CHENG C. Seismic resistance of bridge piers based on damage avoidance design [R]. New Zealand: Technical Report NCEER, 1997.
[5]   NIGEL PRIESTLEY M, TAO J Seismic response of precast prestressed concrete frames with partially debonded tendons[J]. PCI Journal, 1993, 38 (1): 58- 69
doi: 10.15554/pcij.01011993.58.69
[6]   MACRAE G, KIMURA Y, ROEDER C Effect of column stiffness on braced frame seismic behavior[J]. Journal of Structural Engineering, 2004, 130 (3): 381- 391
doi: 10.1061/(ASCE)0733-9445(2004)130:3(381)
[7]   ROH H, REINHORN A Modeling and seismic response of structures with concrete rocking columns and viscous dampers[J]. Engineering Structures, 2010, 32 (8): 2096- 2107
doi: 10.1016/j.engstruct.2010.03.013
[8]   EATHERTON M, MA X, KRAWINKLER H, et al Design concepts for controlled rocking of self-centering steel-braced frames[J]. Journal of Structural Engineering, 2014, 140 (11): 04014082
doi: 10.1061/(ASCE)ST.1943-541X.0001047
[9]   DEIERLEIN G, KRAWINKLER H, MA X, et al Earthquake resilient steel braced frames with controlled rocking and energy dissipating fuses[J]. Steel Construction, 2011, 4 (3): 171- 175
doi: 10.1002/stco.201110023
[10]   EATHERTON M, FAHNESTOCK L, MILLER D Computational study of self-centering buckling restrained braced frame seismic performance[J]. Earthquake Engineering and Structural Dynamics, 2015, 43 (13): 1897- 1914
[11]   曲哲. 摇摆墙-框架结构抗震损伤机制控制及设计方法研究[D]. 北京: 清华大学, 2010.
QU Zhe. Study on seismic damage mechanism control and design of rocking wall-frame structures [D]. Beijing: Tsinghua University, 2010.
[12]   杨树标, 余丁浩, 贾剑辉, 等 框架-摇摆墙结构简化计算方法研究[J]. 工程抗震与加固改造, 2014, 36 (2): 94- 106
YANG Shubiao, YU Dinghao, JIA Jianhui, et al Simplified calculation method of frame rocking-wall structure system[J]. Earthquake Resistant Engineering and Retrofitting, 2014, 36 (2): 94- 106
doi: 10.3969/j.issn.1002-8412.2014.02.015
[13]   PAN P, WU S, NIE X A distributed parameter model of a frame pin-supported wall structure[J]. Earthquake Engineering and Structural Dynamics, 2015, 44 (10): 1643- 1659
doi: 10.1002/eqe.2550
[14]   WIEBE L, CHRISTOPOULOS C Mitigation of higher mode effects in base-rocking systems by using multiple rocking sections[J]. Journal of Earthquake Engineering, 2009, 13 (suppl.1): 83- 108
[15]   WIEBE L, CHRISTOPOULOS C, TREMBLAY R, et al Mechanisms to limit higher mode effects in a controlled rocking steel frame. 1: concept, modelling, and low-amplitude shake table testing[J]. Earthquake Engineering and Structural Dynamics, 2013, 42 (7): 1053- 1068
doi: 10.1002/eqe.2259
[16]   包世华, 张铜生. 高层建筑结构设计和计算[M]. 北京: 清华大学出版社, 2006: 102−104.
[17]   FEMA. Quantification of building seismic performance factor: FEMA P695 [R]. Washington, DC: Federal Emergence Management Agency, 2009.
[18]   周定松, 吕西林 延性需求谱在基于性能的抗震设计中的应用[J]. 地震工程与工程振动, 2004, 24 (1): 30- 38
ZHOU Dingsong, LV Xilin Application of ductility demand spectra in performance-based seismic design[J]. Earthquake Engineering and Engineering Dynamics, 2004, 24 (1): 30- 38
doi: 10.3969/j.issn.1000-1301.2004.01.005
[19]   张文津. 自复位消能摇摆墙-框架结构减震性能研究[D]. 上海: 同济大学, 2017.
ZHANG Wenjin. Study on seismic behavior of self-centering frame with dampers and rocking wall [D]. Shanghai: Tongji University, 2017.
[1] Xiao-yan CAO,Min YU,Jin ZHOU,Yun-zhi WANG. Multi-objective optimization design of adjustable rotary fluid damper parameter[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1439-1449.
[2] Hong-mei XIAO,Li-meng ZHU,Chun-wei ZHANG. Experimentalrimental research on hysteric performance of mild steel damper for shear wall vertical connection[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 122-132.
[3] Xiao-long WANG,Hai-feng LV,Jin-ying HUANG,Guang-pu LIU. Model-free feedforward/feedback control scheme for magnetorheological damper[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 873-878.
[4] Wei WANG,Hong-lai SONG,Chao-chao QUAN,yu LI,Guo-kai ZHEN,Hao-tian ZHAO. Seismic damage repair and lateral stiffness analysis of horizontal corrugated steel plate concrete composite shear wall[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1694-1704.
[5] Wei WANG,Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU. Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1407-1418.
[6] Ren-qiang XI,Xiu-li DU,Pi-guang WANG,Cheng-shun XU,Kun XU. Integrated seismic response of monopile supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 757-766.
[7] Xiao-liang ZHANG,Can GENG,Jia-mei NIE,Qiao GAO. Modelling and characteristic test for hydraulic mem-inerter device[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 430-440.
[8] Yang QU,Yong-feng LUO,Zhao-chen ZHU,Qing-long HUANG. Modal stiffness method for seismic response analysis of latticed shells[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1068-1077.
[9] Wei WANG,Shang-xin GAO,Ai-qun LI,Xing-xing WANG. Seismic responses of disc spring isolated-single degree of freedom system based on asymmetric model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1095-1105.
[10] Teng-yi HUANG,Jin ZHOU,Yan XU,Fan-xu MENG. Modeling of MR damper based on multi-field coupling analysis and influence of structural parameters[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2001-2008.
[11] Shuai LIU,Chao PAN,Zhi-guang ZHOU. Seismic performance and parametric influences of damping-coupled wall system[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 492-502.
[12] XU Jun, LI Ying-min, YANG Xu-yao, HU Xiao-ping. Seismic response of overhead catenary system in high-intensity seismic zones under multi-support excitations[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1575-1582.
[13] ZHAO Ren-da, JIA Yi, ZHAN Yu-lin, WANG Yong-bao, LIAO Ping, LI Fu-hai, PANG Li-guo. Seismic mitigation and isolation design for multi-span and long-unit continuous girder bridge inmeizoseismal area[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 886-895.
[14] LEI Yan-yun, XIE Xu. Improved method of Giuffre-Menegotto-Pinto hysteretic constitutive model[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1926-1934.
[15] CHEN Zhao-hui, NI Yi-qing. Real-time damping-force tracking control of self-sensing magnetorheological dampers[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1551-1558.